TY - JOUR A1 - Meinderink, D. A1 - Kielar, C. A1 - Sobol, Oded A1 - Ruhm, L. A1 - Rieker, F. A1 - Nolkemper, K. A1 - Orive, A. G. A1 - Özcan Sandikcioglu, Özlem A1 - Grundmeier, G. T1 - Effect of PAA-induced surface etching on the adhesion properties of ZnO nanostructured films N2 - Zinc oxide - polymer interfaces are known to exhibit interesting properties regarding molecular adhesion. This work is aimed at the investigation of the effect of the morphology and surface chemistry on the macroscopic adhesion of a model epoxy-based adhesive to nanorod (ZnO NR) and nanocrystalline (ZnO NC) ZnO-modified surfaces. Both ZnO films have been prepared using hydrothermal synthesis on hot-dip galvanized steel (HDG) surfaces by varying the precursor chemistry in order to control the film morphology. Poly (acrylic acid) (PAA) was used to improve the interfacial adhesion by modifying the morphology and surface chemistry of ZnO nanostructured films. The strong interaction of PAA from a dilute and neutral aqueous solution with the ZnO nanocrystallites was shown to significantly improve the interfacial adhesion by means of a nanoetching process. It was shown that the wet peel-forces correlate well with the considered morphology and surface chemistry. KW - Interfacial stability KW - Morphology control KW - Poly(acrylic acid) KW - Adhesion by mechanical interlocking KW - ZnO films KW - ZnO nanorods Nanocrystalline PY - 2021 U6 - https://doi.org/10.1016/j.ijadhadh.2021.102812 SN - 0143-7496 VL - 106 SP - 102812 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-52600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pohl, K. A1 - Özcan Sandikcioglu, Özlem A1 - Voigt, M. A1 - Grundmeier, G. T1 - Adhesion and corrosive delamination of epoxy films on chemically etched ZnMgAl-alloy coatings N2 - The effect of alkaline and acidic pretreatment steps on the surface chemical composition and adhesion properties of ZnMgAl-alloy coated steel was investigated by means of spectroscopic methods, scanning Kelvin probe (SKP) and peel test measurements.The spectroscopic results indicate that the surface film composition can be adjusted by the wet-chemical treatment. To study the corresponding surface adhesive properties, the samples were coated with an epoxy amine adhesive. Peel tests under humid conditions indicated an increased interaction between the acidic pre-treated surface and the adhesive. The results of the SKP analysis show that the acidic cleaned substrates have the highest resistance to delamination, which can be explained by the shift of the interfacial electrode potential. KW - Corrosion KW - ZnMgAl-alloy coatings KW - XPS KW - Scanning Kelvin probe PY - 2016 U6 - https://doi.org/10.1002/maco.201608968 SN - 0947-5117 SN - 1521-4176 VL - 67 IS - 10 SP - 1020 EP - 1026 AN - OPUS4-38196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -