TY - JOUR A1 - Grundlach, D. A1 - Hammer, Wilfried T1 - Anpassung eines Photovervielfachers an die Normspektralwertfunktionen nach dem Spektralschablonenverfahren PY - 1980 SN - 0014-7680 VL - 27 IS - 1-6 SP - 7 EP - 22 PB - Musterschmidt CY - Göttingen AN - OPUS4-9396 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Terstiege, Heinz A1 - Grundlach, D. T1 - Farbtoleranzen in der Kfz-Lackierung - Teil 2: Der Einfluß zylindrischer Krümmungen auf die Farbmessung von Uni-Lackierungen PY - 1980 SN - 0014-6854 SN - 0179-3586 VL - 24 IS - 9 SP - 30 EP - 41 PB - Audin Verl. CY - München AN - OPUS4-9406 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hendriks, L. A1 - Ramkorun-Schmidt, Benita A1 - Grundlach-Graham, A. A1 - Koch, J. A1 - Grass, R. N. A1 - Jakubowski, Norbert A1 - Günther, D. T1 - Single-particle ICP-MS with online microdroplet calibration: toward matrix independent nanoparticle sizing N2 - Single-particle inductively coupled plasma mass spectrometry (sp-ICP-MS) has become an effective tool for the detection and quantification of inorganic nanoparticles (NPs). While sizing of NPs suspended in water is relatively straightforward by sp-ICP-MS, accurate mass quantification of NPs in complex media, such as consumer products and natural systems still remains a challenge. When NPs are suspended in a complex medium, the matrix may affect the analyte sensitivity and lead to inaccurate NP sizing. Here, we investigate the use of an online microdroplet calibration system to size NPs in a single step. In this setup, microdroplets—which are used as the calibrant to determine elemental sensitivities—and nebulized NP-containing solutions are introduced concurrently into the ICP via a dual-inlet sample introduction system. Because calibrant microdroplets and analyte NPs experience the same plasma conditions, both the microdroplets and the NPs are subjected to the same matrix-related signal enhancement or suppression. In this way, the microdroplet calibration standards are automatically matrix matched with the NP-containing solution. The online microdroplet calibration system is combined with an ICP-TOFMS instrument for simultaneous measurement of multiple elements in microdroplets and NPs. We investigate the ability of online microdroplet calibration to compensate for matrix effects through a series of experiments, in which Ag and Au NPs are measured with variable plasma-sampling positions, varying concentrations of HCl and HNO3, varying concentrations of single element solutions, and high concentrations of a salt matrix, i.e. phosphate buffered saline (PBS). Through these experiments, we demonstrate that the online microdroplet calibration strategy provides a matrix-independent mass quantification of analyte NPs in the presence of several established types of matrix effects, including acid effects, space-charge effects, and ionisation suppression. In results presented here, we focus on the size determination of the NPs. KW - Nanoparticle KW - ICP-MS KW - Calibration PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-477589 DO - https://doi.org/10.1039/c8ja00397a SN - 0267-9477 VL - 34 IS - 4 SP - 716 EP - 728 PB - Royal Society of Chemistry CY - London AN - OPUS4-47758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -