TY - CONF A1 - Coelho Lima, Isabela A1 - Grohmann, Maria A1 - Niederleithinger, Ernst T1 - Alternative imaging conditions for reverse-time migration N2 - Poster on the evaluation of several imaging conditions for reverse time migration, applied to ultrasonic echo data, tested with synthetic (simulated) dat and real data from a polyamide model. T2 - Jahrestagung der Deutschen geophysikalischen Gesellschaft CY - Leoben, Austria DA - 12.2.2018 KW - Ultrasound KW - Reverse time migration KW - Imaging condition KW - Concrete KW - Polyamide PY - 2018 AN - OPUS4-44583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Coelho Lima, Isabela A1 - Grohmann, Maria A1 - Niederleithinger, Ernst T1 - Advanced ultrasonic imaging for concrete: Alternative imaging conditions for reverse time migration N2 - Ultrasound echo is a widely used NDT technique for determining the internal geometry of structures. Reverse-time migration (RTM) has been recently introduced to NDT applications, as an imaging method for ultrasound data, to overcome some of the limitations (e.g. imaging steeply dipping reflector) experienced by the Synthetic Aperture Focusing Technique (SAFT), the most commonly used imaging algorithm for these measurements. The standard implementation of RTM also experiences some drawbacks caused by its imaging condition, which is based on the zero-lag of the cross-correlation between source and receiver wavefields and generates high-amplitude low-frequency artifacts. Three alternative imaging conditions, developed for seismic data applications, were tested for their ability to provide better images than the standard cross-correlation: illumination compensation, deconvolution and wavefield decomposition. A polyamide specimen was chosen for the simulation of a synthetic experiment and for real data acquisition. The migrations of both synthetic and real data were performed with the software Madagascar. The illumination imaging condition was able to reduce the low-frequency noise and had a good performance in terms of computing time. The deconvolution improved the resolution in the synthetic tests, but did not showed such benefit for the real experiments. Finally, as for the wavefield decomposition, although it presented some advantages in terms of attenuating the low-frequency noise and some unwanted reflections, it was not able to image the internal structure of the polyamide as well as the cross-correlation did. Suggestions on how to improve the cost-effectiveness of the implementation of the deconvolution and wavefield decomposition were presented, as well as possible investigations that could be carried out in the future, in order to obtain better results with those two imaging conditions. T2 - DGZfP Jahrestagung 2018 CY - Leipzig DA - 07.05.2018 KW - Ultrasound KW - Reverse time migration KW - Imaging condition KW - Concrete PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-448704 SP - Mi.3.A.4, 1 EP - 10 PB - DGZfP AN - OPUS4-44870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grohmann, Maria A1 - Niederleithinger, Ernst A1 - Buske, S. T1 - Geometry Determination of a Foundation Slab Using the Ultrasonic Echo Technique and Geophysical Migration Methods N2 - The ultrasonic echo technique is a frequently used method in non destructive testing for geometry Determination of concrete building elements. Important tasks are thickness measurements as well as the localization and characterization of built-in components and inhomogeneities. Currently mainly the synthetic aperture focusing family of techniques (SAFT) is used for imaging. These algorithms have difficulties in imaging steeply dipping interfaces and complicated structures such as steps and lower boundaries of voids. As an alternative two geophysical migration methods, pre-stack Kirchhoff depth migration and pre-stack Reversetimemigration (RTM)were tested in this paper at a reinforced concrete foundation slab. The slab consists of various reinforcement contents, different thicknesses and two pile heads. In a first step, both methods were evaluated with synthetic 2D data. In the second step, ultrasonic measurement data recorded with shear wave transducers on a line profile on the foundation slab were processed. The use of an automatic scanner simplified the measurements. A comparison of the geophysical migration results with those of SAFT shows, in particular for RTM, a significant improvement in the Imaging of the geometry of the foundation slab. Vertical borders were reconstructed and the location and structure of the lower boundary of the foundation slab were reproduced better. Limitations still exist in imaging the piles below the slab. KW - Kirchhoff migration KW - Ultrasonic echo technique KW - Synthetic aperture focusing technique (SAFT) KW - Reverse-time migration PY - 2016 DO - https://doi.org/10.1007/s10921-016-0334-z SN - 0195-9298 (Print) 1573-4862 (Online) VL - 2016/Band 1 IS - 35:1 SP - 1 EP - 13 PB - Springer CY - New York AN - OPUS4-35838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grohmann, Maria A1 - Niederleithinger, Ernst A1 - Buske, S. T1 - Bestimmung der Geometrie einer Fundamentplatte mit dem Ultraschall-Echo-Verfahren unter Anwendung geophysikalischer Migrationsmethoden T2 - 74. Jahrestagung der Deutschen Geophysikalischen Gesellschaft CY - Karlsruhe, Deutschland DA - 2014-03-10 PY - 2014 AN - OPUS4-32627 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grohmann, Maria A1 - Niederleithinger, Ernst A1 - Buske, S. T1 - Bestimmung der Geometrie einer Fundamentplatte mit dem Ultraschall-Echo-Verfahren unter Anwendung geophysikalischer Migrationsmethoden T2 - DGZfP-Jahrestagung 2014 CY - Potsdam, Deutschland DA - 2014-05-26 PY - 2014 AN - OPUS4-32628 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zheng, H. A1 - Kappatos, V. A1 - Niederleithinger, Ernst A1 - Ertel, Jens-Peter A1 - Grohmann, Maria A1 - Selcuk, C. A1 - Gan, T.-H. T1 - Defect detection in concrete pile using impulse response measurements with sine sweep excitations N2 - For pile integrity inspection, a low cost and portable shaker was used to create the sine sweep signal for pile excitation. The impulse response function, calculated by the deconvolution of pile response from the sine sweep excitation, was proposed to identify the echoes in the piles due to the pile’s impedance changes. The proposed methodology has been evaluated and validated both numerically and experimentally. Based on the results from the simulations and experiments, it was found that the impulse response measurement with sine sweep excitation could be an effective tool to detect the echoes of the pile toe and the defects in the pile. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - Impulse response function KW - Sine sweep excitation KW - Pile integrity KW - Damage detection PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-347157 SN - 1435-4934 SP - 1 EP - 4 PB - Technische Universität Berlin / Bundesanstalt für Materialforschung und -prüfung AN - OPUS4-34715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grohmann, Maria A1 - Niederleithinger, Ernst A1 - Buske, St. T1 - Anwendung der Reverse-Time Migration auf Ultraschall-Echo-Daten in der zerstörungsfreien Prüfung N2 - Das Ultraschall-Echo-Verfahren ist eine klassische zerstörungsfreie Prüftechnik zur Bestimmung der Geometrie von Bauteilen. Die Prüfaufgaben beinhalten unter anderem die korrekte Dickenbestimmung der Baukörper sowie die Lokalisierung von Einbauteilen und Fehlstellen. Stand der Technik bei den Abbildungsverfahren ist die SAFT-Rekonstruktion (Synthetic Aperture Focusing Technique). Diese Gruppe von Verfahren weist Schwierigkeiten bei der Darstellung von steilen Grenzflächen und komplizierten Strukturen auf, wie beispielsweise Stufen oder Unterkanten von Hüllrohren. Zudem verarbeiten die SAFT-Verfahren nur die primären Reflexionen am abzubildendem Objekt korrekt. Als Alternative wird seit einiger Zeit die Reverse-Time Migration (RTM) aus dem Bereich der Geophysik evaluiert. Diese beruht auf der numerischen Lösung der vollständigen Wellengleichung. Die migrierte Abbildung wird durch Kreuzkorrelation von zeitlich vorwärts- und rückwärtsmodellierten Wellenfeldern erzeugt. Für die Durchführung der RTM wurde in einer Vorarbeit ein 2D akustischer Code verwendet und an realen Ultraschallmessdaten getestet. Letztere wurden mit Scherwellenprüfköpfen an einem Stahlbetonfundament aufgenommen. Ein Vergleich der Migrationsergebnisse mit den Ergebnissen der SAFT-Rekonstruktion zeigte für die RTM einen deutlichen Fortschritt in der Rekonstruktion der Bauteilgeometrie. Derzeit wird vom akustischen Code auf einen elastischen Code umgestellt, da für die eigentlichen Ultraschallmessungen elastische Wellen angeregt werden. In einem ersten Schritt wurde dies mit dem Softwarepaket Madagascar umgesetzt und an einem einfachen 2D-Modell getestet. Dabei fanden verschiedene Quellanregungen Anwendung. Um Migrationsartefakte zu reduzieren wurden weiterhin zwei Abbildungsbedingungen getestet. Die Kreuzkorrelation der Verschiebungskomponenten der zeitlich vorwärts-und rückwärtsmodellierten Wellenfelder wurde mit der Kreuzkorrelation der Skalar- und Vektorpotentiale beider Wellenfelder verglichen. Im zweiten Schritt wurden Ultraschallmessdaten an einer Stufenplatte aufgenommen und mit dem akustischen sowie elastischen 2D Code evaluiert. Diese erste Anwendung der elastischen RTM auf reale Messdaten war erfolgreich und zeigt im Vergleich zu der akustischen Auswertung eine Verbesserung in der Abbildungsqualität. T2 - 77. Jahrestagung der Deutschen Geophysikalischen Gesellschaft CY - Potsdam, Germany DA - 27.03.2017 KW - Reverse Time Migration KW - Ultraschall Echo Verfahren PY - 2017 AN - OPUS4-40038 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ertel, Jens-Peter A1 - Niederleithinger, Ernst A1 - Grohmann, Maria ED - Stahlmann, J. T1 - Das PileInspect-Projekt: Pfahlintegritätsprüfung durch Schwinganregung mittels eines elektrodynamischen Shakers N2 - Pfahlintegritätsprüfung von Bohrpfählen durch Messung der Impulsantwort mittels Schwinganregung und regularisierter Dekonvolution. T2 - Pfahlsymposium 2017 CY - Braunschweig, Germany DA - 23.02.2017 KW - Pfahlintegritätsprüfung KW - Tikhonov KW - Dekonvolution KW - PileInspect KW - Shaker PY - 2017 VL - 2017 IS - 102 SP - 217 EP - 235 PB - Eigenverlag Institut für Grundbau und Bodenmechanik - Technische Universität Braunschweig CY - Braunschweig AN - OPUS4-39272 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - König, Markus A1 - Grohmann, Maria A1 - Niederleithinger, Ernst T1 - Anwendung der Reverse-Time Migration auf Ultraschall-Echo-Daten zur Detektion von verdeckten Rissen in Betonkörpern N2 - Das Ultraschall-Echo-Verfahren ist eine wichtige Methode der zerstörungsfreien Prüfung (ZfP). Prüfaufgaben im Bauwesen beinhalten unter anderem die korrekte Dickenbestimmung von Konstruktionen, sowie die Lokalisierung von Einbauteilen und Fehlstellen. Das Abbildungsverfahren RTM (Reverse Time Migration) liefert oft bessere Bilder als konventionelle Verfahren. Die Datenaufnahme am Betonprobekörper erfolgte mit einem Scannersystem der BAM, bei dem jeweils ein Ultraschall-Prüfkopf als Sender bzw. Empfänger diente. Es wurden senkrecht zur Profilrichtung horizontal polarisierte Scherwellen genutzt. Die RTM wurde mit dem Softwarepaket Madagascar gerechnet. Die Ergebnis zeigt das Potential dieser Methode im Bezug auf komplexe Strukturen. Die lateralen Positionen der Risse im RTM-Bild sowie deren Höhe innerhalb des Probekörpers, entsprechen recht genau dem visuellen Befund. T2 - 77. Jahrestagung der Deutschen Geophysikalischen Gesellschaft CY - Potsdam, Germany DA - 27.03.2017 KW - Ultraschall KW - Beton KW - Riss KW - Reverse Time Migration PY - 2017 AN - OPUS4-39662 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grohmann, Maria A1 - Niederleithinger, Ernst T1 - Anwendung der Reverse-Time Migration auf Ultraschall-Echo-Daten in der zerstörungsfreien Prüfung von Betonbauteilen N2 - Das Ultraschall-Echo-Verfahren ist eine klassische zerstörungsfreie Prüftechnik zur Geometriebestimmung sowie Schadensanalyse von Betonkonstruktionen. Um die Abbildung der Ultraschalldaten von komplexen Betonstrukturen zu verbessern, haben wir die Reverse-Time Migration (RTM) aus der Seismik auf die zerstörungsfreie Prüfung im Bauwesen übertragen. In einer Vorstudie haben wir einen 2D akustischen RTM Code verwendet und an realen Ultraschalldaten, die an einer Betonfundamentplatte aufgenommen wurden, getestet. Im Vergleich mit dem herkömmlichen Rekonstruktionsalgorithmus für Ultraschalldaten, der Synthetic Aperture Focusing Technique (SAFT), zeigten die akustischen RTM-Ergebnisse eine deutliche Verbesserung in der Abbildung der inneren Struktur der Betonfundamentplatte. Vertikale Reflektoren konnten rekonstruiert werden, was mit dem herkömmlichen Abbildungsverfahren nicht möglich war. RTM ist, im Gegensatz zu SAFT, eine wellengleichungsbasierte Migrationsmethode und beruht auf der numerischen Lösung der vollständigen Wellengleichung. Die Vorteile sind, dass der Algorithmus sämtliche Informationen des Wellenfeldes verwendet und daher verschiedene Welleneffekte wie z.B. Multipathing berücksichtigt werden können. Die RTM bietet damit die Möglichkeit auch stark geneigte Reflektoren sowie Streukörper mit komplexen Geometrien darzustellen. Ein Nachteil ist jedoch die lange Rechenzeit und der hohe Bedarf an Speicherkapazität. Ein RTM-Algorithmus, der die elastische Wellengleichung anstatt der akustischen verwendet (wie in unserer Vorstudie angewandt), hat das Potenzial, die Abbildungsergebnisse noch weiter zu optimieren. Das liegt daran, dass unsere Ultraschallmessdaten durch Anregung elastischer Wellen generiert werden. In einem ersten Schritt haben wir zwei elastische 2D-RTM-Algorithmen an synthetischen Ultraschalldaten getestet. Diese wurden mit einem Betonmodell, bestehend aus mehreren Stufen und kreisförmigen Lufteinschlüssen, erzeugt. In einem zweiten Schritt wurden reale Ultraschalldaten mit Scherwellenprüfköpfen an einer Betonstufenplatte mit integrierten Hüllrohren aufgenommen. Die Auswertung der realen Daten mit unserem elastischen RTM-Code war ebenfalls erfolgreich. Wir konnten die Abbildungsqualität der Stufen und Hüllrohre im Vergleich zur akustischen RTM und SAFT verbessern. T2 - Tagung Deutsche Geophysikalische Gesellschaft DGG CY - Munich, Germany DA - 07.03.2022 KW - Ultraschall-Echo-Verfahren KW - Reverse Time Migration KW - Synthetic Aperture Focusing Technique PY - 2022 AN - OPUS4-56112 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grohmann, Maria A1 - Niederleithinger, Ernst A1 - Buske, S. T1 - Bestimmung der Geometrie einer Fundamentplatte mit dem Ultraschall-Echo-Verfahren unter Anwendung geophysikalischer Migrationsmethoden N2 - Das Ultraschall-Echo-Verfahren ist ein klassisches Verfahren in der zerstörungsfreien Prüfung zur Bestimmung der Geometrie von Bauteilen. Die Prüfaufgaben beinhalten unter anderem die korrekte Dickenbestimmung der Baukörper sowie die Lokalisierung von Einbauteilen und Fehlstellen. Stand der Technik bei den Abbildungsverfahren ist die SAFT–Rekonstruktion (Synthetic Aperture Focusing Technique). Diese Verfahrensfamilie hat Schwierigkeiten bei der Darstellung von steilen Grenzflächen und komplizierten Strukturen, wie beispielsweise Stufen oder Unterkanten von Hohlräumen und Hüllrohren. Als Alternative werden seit einiger Zeit geophysikalische Migrationsmethoden evaluiert. Am Beispiel eines Stahlbetonfundamentes mit verschiedenen Bewehrungsgehalten, unterschiedlichen Dicken sowie zwei Pfahlköpfen wurden die Kirchhoff-Migration und die Reverse-Time Migration (RTM) getestet. Die strahlenbasierte Kirchhoff-Migration arbeitet ähnlich wie die SAFT-Rekonstruktion. Die RTM basiert auf der vollständigen Wellengleichung. In einem ersten Schritt wurden die Methoden an einem synthetischen, auf der akustischen Wellengleichung basierenden zweidimensionalem Modell getestet. Im zweiten Schritt wurden reale Messdaten, die mit Scherwellenprüfköpfen an der Fundamentplatte aufgenommen wurden, bearbeitet. Der Einsatz eines Scannersystems vereinfachte die Messungen. Die Experimente, die in diesem Manuskript vorgestellt werden, sind von bedeutendem Interesse für die Evaluierung geophysikalischer Migrationsmethoden an analogen Modellen. Ein Vergleich der Migrationsergebnisse mit den bisherigen SAFT-Ergebnissen zeigt insbesondere für die RTM eine deutliche Verbesserung in der Abbildung der Bauteilgeometrie. Vertikale Kanten konnten dargestellt sowie die Lage und Struktur der Rückwände exakter reproduziert werden. Grenzen bestehen noch bei der Darstellung der Pfahlköpfe, da die von dem zylinderförmigen Pfahl kommenden Signale verrauscht sind. Ursachen dafür sind u.a. die Bewehrung, Randeffekte sowie Mehrfachreflexionen an dem Pfahlschaft. T2 - DGZfP-Jahrestagung 2014 CY - Potsdam, Germany DA - 26.05.2014 PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-320249 SN - 978-3-940283-61-0 IS - DGZfP-BB 148 SP - Poster 10, 1 EP - 8 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) AN - OPUS4-32024 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grohmann, Maria A1 - Müller, Sabine A1 - Niederleithinger, Ernst A1 - Sieber, S. T1 - Reverse time migration: introducing a new imaging technique for ultrasonic measurements in civil engineering N2 - Ultrasonic echo testing is widely used in non-destructive testing in civil engineering to investigate concrete structures, to measure thickness, and to locate and characterise built-in components or inhomogeneities. Currently, synthetic aperture focusing techniques are mostly used for imaging. These algorithms are highly developed but have some limitations. For example, it is not possible to image the lower boundary of built-in components like tendon ducts or vertical reflectors. We adopted reverse time migration for non-destructive testing in civil engineering in order to improve the imaging of complicated structures in concrete. By using the entire wavefield, including waves reflected more than once, there are fewer limitations compared to synthetic aperture focusing technique algorithms. As a drawback, the required computation is significantly higher than that for the techniques currently used. Simulations for polyamide and concrete structures showed the potential for non-destructive testing. The simulations were followed by experiments at a polyamide specimen. Here, having acquired almost noise-free measurement data to test the algorithm, we were able to determine the shape and size of boreholes with sufficient accuracy. After these successful tests, we performed experiments at a reinforced concrete foundation slab. We obtained information from the data by reverse time migration, which was not accessible by traditional imaging. The imaging of the location and structure of the lower boundary of the concrete foundation slab was improved. Furthermore, vertical reflectors inside the slab were imaged clearly, and more flaws were found. It has been shown that reverse time migration is a step forward in ultrasonic testing in civil engineering. KW - Ultrasonic echo technique KW - Reverse time migration PY - 2017 DO - https://doi.org/10.3997/1873-0604.2017006 SN - 1569-4445 SN - 1873-0604 VL - 15 IS - 3 SP - 242 EP - 258 PB - Wiley AN - OPUS4-41921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Grohmann, Maria A1 - Niederleithinger, Ernst A1 - Maack, Stefan A1 - Buske, Stefan T1 - Correction: Application of iterative elastic SH reverse time migration to synthetic ultrasonic echo data N2 - This is a corrigendum to the original article "Application of iterative elastic SH reverse time migration to synthetic ultrasonic echo data" that was published in the "Journal of nondestructive evaluation" (2014, DOI: 10.1007/s10921-023-01010-3). PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599597 DO - https://doi.org/10.1007/s10921-024-01052-1 SN - 1573-4862 VL - 43 IS - 1 SP - 1 EP - 3 PB - Springer Science and Business Media CY - Dordrecht AN - OPUS4-59959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ertel, Jens-Peter A1 - Niederleithinger, Ernst A1 - Grohmann, Maria T1 - Old ideas to improve pile integrity testing revisited and optimized N2 - Low strain pile integrity testing is an established method in QA of foundation piles. The technique is very effective and well accepted for larger flaws and length determination. It is part of standards and recommendations. Challenges exist for more complicated structures (e. g. pile walls, diaphragm walls, and pile under structures) and small flaws. Interpretation is subjective in many cases. Possible solutions, e.g. the use of vibrators instead of a hammer or application of several sensors instead of one have been proposed decades ago, but not used much in practice. In several projects we are working on the extension and optimizations of these ideas, based on input from other engineering disciplines. In the frame of the project PileInspect we are working with an international consortium on the use of vibrators instead of a hand held hammer. This allows the full control of input signals as well as the use of (semi)automatic classification routines from machine diagnosis. At BAM we are using a low cost vibrator and deconvolution routines to improve the results of classical low strain testing. In another project we are working on multichannel measurements with sensor placement along the pile axis. This can be used to determine the travel direction of certain waves (downwards or upwards) to improve the interpretation of measurements on piles below constructions or pile walls. The use of ideas adapted from geophysics („vertical seismic profiling“) are helpful. Both concepts are proven by simulations results and first field tests. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - Pile inspect KW - Ultraseismic KW - Low strain pile integrity testing KW - Piles KW - Shaker KW - Deconvolution KW - Vertical seismic profiling PY - 2015 SN - 1435-4934 SP - 1 EP - 4 AN - OPUS4-34716 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grohmann, Maria A1 - Niederleithinger, Ernst A1 - Buske, S. T1 - Anwendung der Reverse-Time Migration auf Ultraschall-Echo-Daten in der zerstörungsfreien Prüfung N2 - Das Ultraschall-Echo-Verfahren ist eine klassische zerstörungsfreie Prüftechnik zur Bestimmung der Bauteilgeometrie sowie zur Lokalisierung von Einbauteilen und Fehlstellen. Der aktuelle Stand der Technik bei den Abbildungsverfahren ist die SAFT-Rekonstruktion (Synthetic Aperture Focusing Technique). Diese Gruppe von Verfahren weist u.a. Schwierigkeiten bei der Darstellung von steilen Grenzflächen auf und verarbeitet nur die primären Reflexionen am abzubildendem Objekt korrekt. Als Alternative werden seit einiger Zeit Migrationsmethoden aus dem Bereich der Geophysik evaluiert. Am Beispiel eines Stahlbetonfundamentes wurden in einer Vorarbeit die Kirchhoff-Migration und die Reverse-Time-Migration (RTM) getestet. Die strahlenbasierten Algorithmen der Kirchhoff-Migration und SAFT-Rekonstruktion sind eng miteinander verwandt. Die RTM hingegen basiert auf der numerischen Lösung der vollständigen Wellengleichung. Durch Kreuzkorrelation von zeitlich vorwärts- und rückwärtsmodellierten Wellenfeldern erzeugt die RTM die migrierte Abbildung. Für die Durchführung der RTM wurde ein 2D akustischer Code verwendet. Beide Migrationsmethoden wurden an auf Basis der akustischen Wellengleichung generierten synthetischen 2D-Daten sowie an realen Ultraschallmessdaten getestet. Letztere wurden mit Scherwellenprüfköpfen an der Fundamentplatte aufgenommen. Ein Vergleich der Migrationsergebnisse mit den Ergebnissen der SAFT-Rekonstruktion zeigte besonders für die RTM eine deutliche Verbesserung in der Abbildung der Bauteilgeometrie. Die Vorstudie an der Fundamentplatte lieferte somit den Nachweis, dass geophysikalische Migrationsverfahren auf reale Ultraschall-Messdaten anwendbar sind. Jedoch zeigten sich vereinzelt starke Artefakte und systembedingt Schwierigkeiten bei der Abbildung dreidimensionaler Strukturen. Nunmehr wird vom akustischen Code auf einen elastischen Code umgestellt, da die eigentlichen Ultraschallmessungen mit elastischen Wellen erfolgen. In einem ersten Schritt wurde dies mit dem Softwarepaket Madagascar realisiert und an einem einfachen 2D-Modell getestet. Dabei fanden verschiedene Quellanregungen Anwendung. Des Weiteren wurden zwei Abbildungsbedingungen evaluiert. Ergebnisse der Kreuzkorrelation der Verschiebungskomponenten der zeitlich vorwärts-und rückwärtsmodellierten Wellenfelder wurden mit Resultaten der Kreuzkorrelation der Skalar- und Vektorpotentiale beider Wellenfelder verglichen. T2 - 76. Jahrestagung der Deutschen Geophysikalischen Gesellschaft CY - Münster, Germany DA - 14.03.2016 KW - Ultrasonic echo technique KW - Synthetic aperture focusing technique (SAFT) KW - Reverse-time migration PY - 2016 AN - OPUS4-35840 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grohmann, Maria A1 - Müller, Sabine A1 - Niederleithinger, Ernst T1 - Reverse Time Migration: Introduction of a New Imaging Technique for Ultrasonic Measurements in Civil Engineering T2 - NDT-CE 2015 CY - Berlin, Germany DA - 2015-09-15 PY - 2015 AN - OPUS4-34389 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ertel, Jens-Peter A1 - Niederleithinger, Ernst A1 - Grohmann, Maria T1 - Advances in pile integrity testing N2 - For decades, the low-strain impact integrity testing using a hammer blow is well established as a method of quality assurance for various pile types. However, this method has its limitations. Our research and development focuses on improving the excitation signal using a shaker system in contrast to the standard hammer method. Another approach is to increase the amount of sensors used during testing. The purpose is to identify the direction of wave propagation which gives advantages under difficult conditions, such as piles below structures. Pile integrity testing (PIT) using a shaker system was performed on two 11 m long piles of 90 cm in diameter. While one pile was intact, the other one showed a flaw at approx. 3.5 m below pile top, which was confirmed by standard PIT in 2012. A logarithmic sweep between 500 Hz and 1 KHz of 0.1 s was used as the input signal, being vertically injected into the pile. Prior to that, simulations on similar pile geometries showed that the depth of the pile toe as well as flaws within the pile can be extracted by applying regularized deconvolution. The result is the impulse response in the time domain. The application of deconvolution on the measured signals shows that it is possible to identify the pile length but it is more difficult to clearly extract the flaw’s position in the pile. Additional digital signal processing techniques and the improvement of the regularized deconvolution method as well as the experimental setup need to be investigated. Another way to improve the PIT method is to use a multichannel sensor arrangement. By arranging several accelerometers vertically along the accessible part of the pile shaft, it is possible to distinguish between downward and upward traveling waves. Furthermore, it is possible to estimate the unknown wave speed, which gives the possibility of more accurate pile length calculations. The method was evaluated successfully during a measurement campaign of a slab foundation with subjacent piles. In 20 of 28 cases the pile length could be detected accurately. KW - Pile integrity testing KW - Pile length KW - CEFIT KW - Deconvolution KW - Simulation PY - 2016 UR - http://nsg.eage.org/publication/publicationdetails/?publication=86879 SN - 1569-4445 SN - 1873-0604 VL - 14 IS - 6 SP - 503 EP - 512 PB - EAGE Publications AN - OPUS4-37837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grohmann, Maria A1 - Müller, Sabine A1 - Niederleithinger, Ernst T1 - Reverse time migration: Introduction of a new imaging technique for ultrasonic measurements in civil engineering N2 - Ultrasonic echo testing is widely used in non-destructive testing in civil engineering to investigate concrete structures, to measure thickness, and to locate and characterise built-in components or inhomogeneities. Currently, synthetic aperture focusing techniques are mostly used for imaging. These algorithms are highly developed but have some limitations. For example, it is not possible to image the lower boundary of built-in components like tendon ducts or vertical reflectors. We adopted reverse time migration for non-destructive testing in civil engineering in order to improve the imaging of complicated structures in concrete. By using the entire wavefield, including waves reflected more than once, there are fewer limitations compared to synthetic aperture focusing technique algorithms. As a drawback, the required computation is significantly higher than that for the techniques currently used. Simulations for polyamide and concrete structures showed the potential for non-destructive testing. The simulations were followed by experiments at a polyamide specimen. Here, having acquired almost noise-free measurement data to test the algorithm, we were able to determine the shape and size of boreholes with sufficient accuracy. After these successful tests, we performed experiments at a reinforced concrete foundation slab. We obtained information from the data by reverse time migration, which was not accessible by traditional imaging. The imaging of the location and structure of the lower boundary of the concrete foundation slab was improved. Furthermore, vertical reflectors inside the slab were imaged clearly, and more flaws were found. It has been shown that reverse time migration is a step forward in ultrasonic testing in civil engineering. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - Ultrasound KW - Imaging KW - Reverse time migration KW - Reflection seismics KW - Concrete PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-345406 SN - 1435-4934 SP - 1 EP - 10 PB - Technische Universität Berlin / Bundesanstalt für Materialforschung und -prüfung AN - OPUS4-34540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grohmann, Maria A1 - Niederleithinger, Ernst A1 - Buske, S. A1 - Büttner, C. T1 - Application of Elastic P-SV Reverse Time Migration to Synthetic Ultrasonic Echo Data from Concrete Members N2 - The ultrasonic echo technique is frequently used in non-destructive testing (NDT) of concrete structures for thickness measurements, geometry determinations as well as localization of built-in components. To improve ultrasonic imaging of complex structures in concrete, we transferred a geophysical imaging technique, the reverse time migration (RTM), to NDT in civil engineering. In contrast to the conventionally used synthetic aperture focusing technique (SAFT) algorithms, RTM is a wavefield continuation method in time and uses the full wave equation. Thus, RTM can handle complicated wave propagations in any direction without dip limitation. In this paper, we focused on the application and evaluation of a two-dimensional (2D) elastic RTM algorithm considering compressional waves, vertically polarized shear waves, and Rayleigh waves. We tested the elastic RTM routine on synthetic ultrasonic echo data generated with a 2D concrete model consisting of several steps and circular air inclusions. As these complex structures can often be found in real-world NDT use cases, their imaging is especially important. By using elastic RTM, we were able to clearly reproduce vertical reflectors and lower edges of circular air voids inside our numerical concrete model. Such structures cannot be imaged with conventional SAFT algorithms. Furthermore, the used elastic RTM approach also yielded a better reconstruction of a horizontal reflector and upper boundaries of circular air inclusions. Our encouraging results demonstrate that elastic RTM has the potential to significantly improve the imaging of complex concrete structures and, thus, is a step forward for detailed, high-quality ultrasonic NDT in civil engineering. KW - Concrete KW - Ultrasound KW - Imaging KW - Reverse time migration KW - Elastic PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580680 DO - https://doi.org/10.1007/s10921-023-00962-w SN - 0195-9298 VL - 42 IS - 3 SP - 1 EP - 18 PB - Springer Nature AN - OPUS4-58068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grohmann, Maria A1 - Niederleithinger, Ernst A1 - Buske, B. T1 - Application of Elastic Reverse Time Migration to Ultrasonic Echo Data in Civil Engineering N2 - To improve ultrasonic imaging of concrete structures, we transferred a seismic migration technique, the Reverse Time Migration (RTM), to non-destructive testing. A 2D elastic RTM algorithm was tested on synthetic ultrasonic echo data. Compared to the typically used synthetic aperture focusing technique (SAFT) as well as our acoustic RTM algorithm, the presented elastic RTM results show an enhancement in imaging vertical reflectors and complex features inside the 2D numerical concrete model. T2 - The International Symposium on Nondestructive Testing in Civil Engineering CY - Zurich, Switzerland DA - 16.08.2022 KW - Ultrasonic Echo Technique KW - Reverse Time Migration KW - Synthetic Aperture Focusing Technique PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-561147 UR - https://www.ndt.net/article/ndtce2022/paper/60699_manuscript.pdf SP - 1 EP - 6 AN - OPUS4-56114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grohmann, Maria A1 - Niederleithinger, Ernst T1 - Application of Elastic Reverse Time Migration to Ultrasonic Echo Data in Civil Engineering N2 - The ultrasonic echo technique is widely used in non-destructive testing for investigation and damage analysis of concrete constructions. Important applications include thickness measurements, geometry determination, the localization and characterization of built-in components as well as the detection of quality issues (cracks, honeycombing, low concrete strength). To improve ultrasonic data imaging of complicated structures in concrete, we transferred a seismic migration technique, the Reverse Time Migration (RTM), to non-destructive testing in civil engineering. In a preliminary study, we tested a 2D acoustic RTM algorithm on measured ultrasonic echo data acquired at a concrete foundation slab. Compared to the conventional used synthetic aperture focusing technique algorithms (SAFT) for ultrasonic data reconstruction, our acoustic RTM results showed a significant improvement in imaging the interior structure of the concrete slab. Vertical reflectors were reconstructed which was not possible by traditional imaging. In contrast to SAFT, RTM is a wavefield-continuation method in time and uses the full wave equation. RTM is, thus, able to include multiple reflections and to handle multi-pathing as well as many other complex situations. As a drawback RTM requires extensive computing power and memory capacity. Nevertheless, due to progresses in parallel processing and other computational technologies RTM has become appealing for the application in the field of non-destructive testing. An RTM algorithm, which uses the full elastic wave equation instead of the full acoustic one (as applied in our preliminary work) has the potential to optimize the imaging results even further. This is due to the fact, that our ultrasonic measurement data are generated by exciting elastic waves. Thus, in a first step, two 2D elastic RTM algorithms were tested on synthetic ultrasonic echo data generated with a concrete model consisting of several steps and circular shaped air inclusions. In addition, two imaging conditions were evaluated to reduce migration artifacts. Our synthetic elastic RTM results showed an enhancement in imaging the features inside the test model compared to acoustic RTM and SAFT. In a second step, we acquired ultrasonic measurement data at a concrete test specimen consisting of three steps and four air filled tendon ducts. The evaluation of the real data with our elastic RTM code was also successful and the reconstruction of the geometries of the steps and tendon ducts could be improved. With our study we have shown that elastic RTM is a step forward for ultrasonic testing in civil engineering. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Ultrasonic Echo Technique KW - Reverse Time Migration KW - Synthetic Aperture Focusing Technique PY - 2022 AN - OPUS4-56113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Ertel, Jens-Peter A1 - Grohmann, Maria ED - Stahlmann, J. T1 - Low-Strain-Pfahlintegritätsprüfung reloaded: Geht nicht doch ein bisschen mehr? N2 - Die beiden in dieser Arbeit dargestellten Beispiele zeigen, dass sich die Low-strain-Pfahlintegritätsprüfung noch über den bisherigen, schon sehr erfolgreichen Stand hinaus entwickeln kann. Der Einsatz von Vibratortechnik und passender mathematischer Methoden bietet das Potential, Prüfungen auch unter bisher nicht lösbaren Randbedingungen durchzuführen. Dazu gehören sehr schlanke Pfähle und Messungen bei hohem Störpegel. Der erhöhte Mess- und Auswerteaufwand ist jedoch im Einzelfall gegenüber dem erzielbaren Erfolg abzugleichen. Apparativ müssen noch Entwicklungsarbeiten geleistet werden, um einen einfachen und zuverlässigen Einsatz in der Praxis zu ermöglichen. Die Messung mit mehreren Sensoren entlang des Pfahls kann schon heute in der Praxis eingesetzt werden. In vielen Fällen lassen sich damit auch Messungen an Pfählen im Bestand durchführen, bei denen die konventionelle Pfahlprüfung aufgrund von überlagernden Signalen aus der aufgehenden Struktur versagt. T2 - Pfahl-Symposium 2015 - Fachseminar CY - Braunschweig, Germany DA - 19.02.2015 KW - Pfahlprüfung KW - Integritätsprüfung KW - Vibrator KW - Mehrkanalmethode KW - Dekonvolution PY - 2015 SN - 3-927610-92-5 N1 - Serientitel: Mitteilung des Instituts für Grundbau und Bodenmechanik - Technische Universität Braunschweig – Series title: Mitteilung des Instituts für Grundbau und Bodenmechanik - Technische Universität Braunschweig IS - 99 SP - 117 EP - 135 PB - TU Braunschweig, Institut für Grundbau und Bodenmechanik AN - OPUS4-32643 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grohmann, Maria A1 - Niederleithinger, Ernst T1 - Application of Reverse-Time Migration to Ultrasonic Echo Data in Nondestructive Testing N2 - Ultrasonic echo testing is widely used in non-destructive testing to investigate concrete structures as well as to locate built-in components or inhomogeneities. Currently, Synthetic Aperture Focusing Technique algorithms (SAFT) are used for imaging. These algorithms are highly developed but have some limitations. It is not possible to image the lower boundary of tendon ducts or vertical reflectors. We adopted a geophysical imaging technique, the Reverse Time Migration (RTM), to non-destructive testing in order to improve the imaging of complicated structures in concrete. By using the entire wavefield there are fewer limitations compared to SAFT. In a first step, simulations for polyamide and concrete structures were performed by using a 2D acoustic finite difference code. The simulations were followed by experiments at a polyamide specimen. Here we were able to determine shape and size of boreholes with a sufficient accuracy. After these successful tests we carried out experiments at a reinforced concrete foundation slab. The reconstruction of the structure of the lower boundary of the slab was improved and vertical reflectors inside the slab were imaged clearly. These tests on polyamide and concrete showed that RTM is a step forward for ultrasonic testing. However we observed migration artifacts and difficulties in imaging 3D structures. In a second step we implemented a 2D elastic RTM code, since for our ultrasonic measurements elastic waves are emitted. The modeling code is included in the Madagascar software package. The required computing power for performing elastic RTM is significantly high. Thus we need appropriate computer hardware to obtain meaningful results within an adequate time frame. Using our hardware RTM of an ultrasonic data set takes far too long (3 months). We applied the elastic code to ultrasonic data acquired on a concrete specimen which contains vertical reflectors. A comparison of the acoustic RTM results with those obtained by elastic RTM showed an improvement in the image quality. Future work includes the analysis of RTM artifacts and the expansion of the algorithm to three dimensions. Another topic to be addressed is to how to account for the size of the ultrasonic transducer arrays which we are using. T2 - Future Soc Lab Day am Hasso Plattner Institut CY - Potsdam, Germany DA - 25.04.2017 KW - Ultrasonic Echo Technique KW - Nondestructive Testing PY - 2017 AN - OPUS4-40036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Grohmann, Maria A1 - Ertel, Jens-Peter T1 - Using geophysical methods in quality assurance and inspection of foundations N2 - Modern geophysical methods might be either directly applied to concrete structures or integrated into existing testing schemes to assist in quality assurance and inspections. This paper gives an overview on some ideas and developments from the author’s work: • Vibrator technologies to improve pile integrity testing. • Ideas from vertical seismic profiling used in multichannel pile inspection • Cross- and downhole seismics to check the diameter of jet grouting columns • Improving the parallel seismic methods for precise length measurement of piles and foundation walls • Seismic migration methods to improve ultrasonic imaging of foundation slabs • Seismological tools to monitor subtle changes in concrete constructions The authors strongly believe that the cooperation between geophysics and civil engineering, which is obviously becoming stronger and stronger, will lead to a large number of innovative approaches. T2 - ICEG 2017 CY - Al Ain, United Arab Emirates DA - 09.10.2017 KW - Foundations KW - NDT KW - Geophysics PY - 2017 SP - Paper EG02, 1 EP - 5 PB - UAE University CY - Al Ain, United Arab Emirates AN - OPUS4-42552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grohmann, Maria A1 - Niederleithinger, Ernst A1 - Maack, Stefan A1 - Buske, Stefan T1 - Application of iterative elastic SH reverse time migration to synthetic ultrasonic echo data N2 - The ultrasonic echo technique is widely used in non-destructive testing (NDT) of concrete objects for thickness measurements, geometry determinations and localization of built-in components. To improve ultrasonic imaging of complex concrete structures, we transferred a seismic imaging technique, the Reverse Time Migration (RTM), to NDT in civil engineering. RTM, in contrast to the conventionally used synthetic aperture focusing technique (SAFT) algorithms, considers all wavefield types and thus, can handle complex wave propagations in any direction with no limit on velocity variations and reflector dip. In this paper, we focused on the development, application and evaluation of a two-dimensional elastic RTM algorithm considering horizontally polarized shear (SH) waves only. We applied the elastic SH RTM routine to synthetic ultrasonic echo SH-wave data generated with a concrete model incorporating several steps and circular cavities. As these features can often be found in real-world NDT use cases, their imaging is extremely important. By using elastic SH RTM, we were able to clearly reproduce almost all reflectors inside the concrete model including the vertical step edges and the cross sections of the cavities.We were also capable to show that more features could be mapped compared to SAFT, and that imaging of complex reflectors could be sharpened compared to elastic P-SV (compressional-vertically polarized shear) RTM. Our promising results illustrate that elastic SH RTM has the potential to significantly enhance the reconstruction of challenging concrete structures, representing an important step forward for precise, high-quality ultrasonic NDT in civil engineering. KW - Ultrasonic echo technique KW - Concrete structures KW - Elastic reverse time migration KW - Synthetic aperture focusing technique KW - Horizontally polarized shear waves PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-591716 DO - https://doi.org/10.1007/s10921-023-01010-3 SN - 1573-4862 VL - 43 SP - 1 EP - 16 PB - Springer Science and Business Media CY - Dordrecht AN - OPUS4-59171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -