TY - CONF A1 - Shcheglov, Pavel A1 - Gumenyuk, Andrey A1 - Gornushkin, Igor B. A1 - Rethmeier, Michael T1 - Experimental investigation of the laser-plume interaction during high power fiber laser welding N2 - The effect of the well-known plasma absorption and refraction in CO2-laser metal welding plumes is in case of high power solid state laser welding negligibly small. By contrast, the diffraction effects of shorter wavelength laser radiation are considerable. According to the results of preliminary studies, the fine condensed metal particles in the welding plume can lead to essential worsening of the laser beam quality. This work is devoted to the investigation of the lasermatter interaction during up to 20 kW ytterbium fiber laser welding of thick mild steel plates. The plume attenuation of a probe 1.3 µm wavelength diode laser beam as well as of continuous radiation in 250-600 nm wavelength range was measured during welding with and without Ar shielding gas supply. The measured results allow it to calculate average size and concentration of fine condensed metal particles in different plume areas using the multi-wavelength method and the Mie scattering theory. The plume temperature, which determines the condensation conditions, was measured by means of Fe I atom spectral line emission registration. The obtained results can be also of interest for remote metal treatment with high-power fiber or disc lasers. T2 - 30th ICALEO - International congress on applications of lasers & electro-optics CY - Orlando, FL, USA DA - 2011-10-23 PY - 2011 SN - 978-0-912035-94-9 SP - Paper 1606, 637 EP - 645 AN - OPUS4-24921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. A1 - Merk, Sven T1 - Interplay between Diagnostic and Modeling in Laser Induced Breakdown Spectroscopy T2 - CSI37 - Colloquium Spectroscopicum Internatione XXXVII CY - Búzios, Brazil DA - 2011-08-28 PY - 2011 AN - OPUS4-24879 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Nagli, L. A1 - Gaft, M. T1 - Fraunhofer Lines in Double Pulse Laser Induced Plasma T2 - NASLIBS 2011 CY - Clearwater, FL, USA DA - 2011-07-18 PY - 2011 AN - OPUS4-24883 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Heitmann, U.M. A1 - Müller, Maike A1 - Smith, B.W. A1 - Omenetto, N. A1 - Winefordner, J. D. T1 - Evaluation of optical thickness of laser induced plasma by duplication factor approach T2 - FACSS 2006 CY - Orlando, FL, USA DA - 2006-09-24 PY - 2006 AN - OPUS4-16479 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Heitmann, U.M. A1 - Smith, B.W. A1 - Omenetto, N. A1 - Winefordner, J. D. A1 - Müller, Maike T1 - Analysis of cast Iron bx Laser Induced breakdown spectroscopy using ortogonal pre-ablation spark and high-resolution echelle spectrometer T2 - FACSS 2006 CY - Orlando, FL, USA DA - 2006-09-24 PY - 2006 AN - OPUS4-16480 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Laser induced plasmas: prediction of plasma composition T2 - FACSS 2008 CY - Reno, NV, USA DA - 2008-10-27 PY - 2008 AN - OPUS4-18529 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Laser Induced Plasma Modeling: Implications for Spectrochemical T2 - LIBS 2008 CY - Berlin, Germany DA - 2008-09-22 PY - 2008 AN - OPUS4-18531 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shcheglov, Pavel A1 - Gumenyuk, Andrey A1 - Gornushkin, Igor B. A1 - Rethmeier, Michael A1 - Petrovskiy, V.N. T1 - Vapor-plasma plume investigation during high-power fiber laser welding N2 - This work is devoted to the investigation of the laser–matter interaction during up to 20 kW ytterbium fiber laser welding of thick mild steel plates. The plume attenuation of a probe 1.3 µm wavelength diode laser beam as well as of continuous radiation in the 250–600 nm wavelength range was measured during welding with and without Ar shielding gas supply. The measured results allow the calculation of the average size and concentration of fine condensed metal particles in different plume areas using the multi-wavelength method and the Mie scattering theory. The plume temperature, which determines the condensation conditions, was measured by means of Fe I atom spectral line emission registration. The spatial distribution of the extinction coefficient in the welding plume was measured and the plume attenuation of the high-power fiber laser beam during the welding process was estimated. PY - 2013 DO - https://doi.org/10.1088/1054-660X/23/1/016001 SN - 1054-660X SN - 1531-8494 VL - 23 IS - 016001 SP - 1 EP - 7 PB - MAIK Nauka/Interperiodica Publ. CY - Moscow AN - OPUS4-27280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shabanov, Sergej V. A1 - Gornushkin, Igor B. T1 - Absorption tomography of laser induced plasmas N2 - An emission tomography of laser-induced plasmas employed in the laser induced breakdown spectroscopy (LIBS) requires signal integration times in a microsecond range during which the LIBS plasma cannot be considered stationary. Consequently, the use of the data for reconstructing the plasma properties under the assumption that the latter does not change significantly during the integration time leads to inaccurate results. To reduce the integration time, it is proposed to measure a plasma absorption in parallel rays using a scanning rectangular aperture whose dimension Δ along the scanning direction is about a characteristic size of plasma plumes (Δ ~ 1 cm) and the other dimension Δp is of the order of a uniformity length of plasma parameters (Δp ~ 10 µm). The aperture is moved step by step along the scanning direction and the total energy of photons coming through the aperture is measured during time T at each position of the aperture. Owing to the large size of the aperture, the integration time T is reduced by a factor ~ Δp/Δ. A numerical data processing is proposed to restore the spatial resolution of the plasma absorption along the scanning direction. It is determined by the scanning step Δs ≤ Δp. Another advantage of the proposed procedure is that inexpensive linear CCD or non-discrete (PMT, photodiode) detectors can be used instead of costly 2-dimensional detectors. KW - Plasma tomography KW - Laser induced plasma PY - 2012 DO - https://doi.org/10.1016/j.jqsrt.2011.12.016 SN - 0022-4073 VL - 113 IS - 7 SP - 518 EP - 523 PB - Pergamon Press CY - Oxford [u.a.] AN - OPUS4-25823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gaft, M. A1 - Nagli, L. A1 - Gornushkin, Igor B. A1 - Groisman, Y. T1 - Doubly ionized ion emission in laser-induced breakdown spectroscopy in air N2 - The emission from doubly ionized species in laser-induced plasmas has not been properly investigated before since most analytical measurements were made at relatively long delays. This work proves that doubly ionized species, such as boron (B) III and iron (Fe) III, can exist during the first 150–200 ns of the plasma lifetime in plasmas produced in air by typical lasers with irradiances of 109 1011 W/cm². The emission from these ions was detected using both the double- and single-pulse excitations. The sum of the second ionization potential and the energy of corresponding excited states is approximately 30 eV. The presence of doubly charged ions in the early plasma was additionally confirmed by computer simulations using a collision-dominated plasma model. The Emission from doubly ionized species may be used for analytical purpose. For example, in the spectrum from a B–Fe ore, the B III analytical line at 206.6 nm is free from Fe spectral interference thus enabling the online laser-induced breakdown spectroscopy sorting of ores into three products with high, medium, and low B2O3 contents. KW - Plasma KW - Double ionization KW - Boron KW - Iron KW - Online KW - Sorting PY - 2011 DO - https://doi.org/10.1007/s00216-011-4847-0 SN - 1618-2642 SN - 1618-2650 VL - 400 IS - 10 SP - 3229 EP - 3237 PB - Springer CY - Berlin AN - OPUS4-25825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nagli, L. A1 - Gaft, M. A1 - Gornushkin, Igor B. T1 - Comparison of single and double-pulse excitation during the earliest stage of laser induced plasma N2 - This paper deals with comparison of single-pulse (SP) and double-pulse (DP) excited plasmas during their earliest phase of life, from 0 to 500 ns. The samples are Si and Al and the irradiance per pulse is approximately 20 GWcm-2 under ambient conditions. It was found that at the beginning of a plasma lifespan, Si III and Al III ions were excited even under the SP excitation conditions and became much more abundant under DP excitation. The lifetime of doubly-ionized species was found to be very short, and after a delay of 200–300 ns they were not detected. The DP plasma differs from the SP plasma by the intensity of continuum radiation and by the width of emission lines, which are substantially narrower in the DP plasma. The intensity of light emitted from singly and, especially, doubly-ionized species is higher compared with neutral atoms; whereas the decay time of both neutral and ionized species is longer. An excitation mechanism for the DP plasma is proposed enabling qualitative and a quantitative explanation of the experimental data. KW - Laser induced plasma KW - Single ionization KW - Double ionization KW - Collision dominated plasma model PY - 2011 DO - https://doi.org/10.1007/s00216-011-4806-9 SN - 1618-2642 SN - 1618-2650 VL - 400 IS - 10 SP - 3207 EP - 3216 PB - Springer CY - Berlin AN - OPUS4-25826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shabanov, Sergej V. A1 - Gornushkin, Igor B. T1 - Emission plasma tomography with large acceptance angle apertures relevant to laser induced plasma spectroscopy N2 - It is proposed to use apertures with large acceptance angles to reduce the integration time when studying the emissivity of laser induced plasmas by means of the Abel inversion method. The spatial resolution lost due to contributions of angled lines of sight to the intensity data collected along the plasma plume diameter is restored by a special numerical data processing. The procedure is meant for the laser induced plasma diagnostics and tomography when the integration time needed to achieve a reasonable signal to noise ratio exceeds a characteristic time scale of the plasma state variations which is short especially at early stages of the plasma evolution. It can also be used to improve the spatial resolution in a conventional experimental setup for plasma diagnostics. KW - Abel inversion KW - LIBS KW - Plasma tomography PY - 2011 DO - https://doi.org/10.1016/j.sab.2011.04.006 SN - 0584-8547 SN - 0038-6987 VL - 66 IS - 6 SP - 413 EP - 420 PB - Elsevier CY - Amsterdam AN - OPUS4-25827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nagli, L. A1 - Gaft, M. A1 - Gornushkin, Igor B. T1 - Fraunhofer-type absorption lines in double-pulse laser-induced plasma N2 - We studied the confocal double-pulse laser-induced plasma in the very beginning of its life. It was found that the second laser pulse fired 0.7 to 5 µs after the first pulse produces plasma which, during the first 0 to 20 ns, resembles solar configuration. There is a very hot and compact plasma core that radiates a broad continuum spectrum and a much larger and cooler outer shell. The light from the hot core passes through the cold outer shell and is partly absorbed by atoms and ions that are in ground (or close to ground) states. This produces absorption lines that are similar to Fraunhofer lines observed in the sun spectrum. The possibility to use these absorption lines for new direct and calibration free laser-induced breakdown spectroscopy analytical applications, both in laboratory and industrial conditions, is proved. PY - 2012 DO - https://doi.org/10.1364/AO.51.00B201 SN - 0003-6935 SN - 1539-4522 VL - 51 IS - 7 SP - B201 EP - B212 PB - Optical Society of America CY - Washington, DC AN - OPUS4-25828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kornev, R. A1 - Gornushkin, Igor B. A1 - Nazarov, V. A1 - Shkrunin, V. A1 - Ermakov, A. T1 - Features of hydrogen reduction of SiF4 in ICP plasma N2 - Probe diagnostics is used to determine the electron temperature and electron number density in a low pressure inductively coupled plasma (ICP) ignited in the mixture of SiF4, Ar and H2. Emission spectra of mixtures with different stoichiometry of components are investigated and the electron density distribution function (EDDF) is estimated. The optimal conditions for high conversion of SiF4 into Si are found by studying the dependence of the yield of silicon upon the ratio of reagents. The maximum achieved yield of silicon is 85% under the optimal conditions. Based on the analysis of IR and MS spectra of exhaust gases, 5% of initial SiF4 converts into volatile fluorosilanes. A rate of production of Si is 0.9 g/h at the energy consumption 0.56 kWh /g. KW - Plasma enhanced chemical vapor deposition KW - PECVD KW - Silicon tetrafluoride KW - Emission spectroscopy KW - Probe diagnostics PY - 2022 DO - https://doi.org/10.1016/j.sab.2022.106502 SN - 0584-8547 VL - 195 SP - 106502 PB - Elsevier B.V. AN - OPUS4-55316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Modeling, Diagnostics and Applications of Laser Induced Plasma N2 - Laser-induced plasmas are widely used in many areas of science and technology; examples include spectrochemical analysis, thin film deposition, and material processing. Several topics will be addressed. First, general phenomenology of laser-induced plasmas will be discussed. Then, a chemical model will be presented based on a coupled solution of Navier-Stokes, state, radiative transfer, material transport, and chemical equations. Results of computer simulations for several chemical systems will be shown and compared to experimental observations obtained by optical imaging, spectroscopy, and tomography. The latter diagnostic tools will also be briefly discussed. Finally, a prospective application of laser-induced plasma and plasma modeling will be illustrated on the example of chemical vapor deposition of molybdenum borides and micro processing and coating of titanium dental implants. T2 - University of Saragossa, Department of Chemistry CY - Saragossa, Spain DA - June 30, 2022 KW - Laser ablation KW - Laser induced plasma KW - Plasma modeling KW - Plasma diagnostics KW - Surface coating PY - 2022 AN - OPUS4-55166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Optical Detection of Defects during Laser Metal Deposition N2 - Laser metal deposition is a rapidly evolving method for additive manufacturing that combines high performance and simplified production routine. Quality of production depends on an instrumental design and operational parameters, which require constant control during the process. In this work, feasibility of using optical spectroscopy as a control method is studied via modeling and experimentally. A simplified thermal model is developed based on the time-dependent diffusion-conduction heat equation and geometrical light collection into detection optics. Intense light emitted by a laser-heated spot moving across a sample surface is collected and processed to yield the temperature and other temperature-related parameters. In the presence of surface defects, the temperature field is distorted in a specific manner that depends on shape and size of the defect. Optical signals produced by such the distorted temperature fields are simulated and verified experimentally using a 3D metal printer and a sample with artificially carved defects. Three quantities are tested as possible metrics for monitoring the process: temperature, integral intensity, and correlation coefficient. The shapes of the simulated signals qualitatively agree with the experimental signals; this allows for a cautious inference that optical spectroscopy can detect surface defects and, possibly, predict their characters, e.g., inner or protruding. T2 - Colloquium Spectroscopicum Internationale XLII (CSI XLII) CY - Gijon, Spain DA - 30 May 2022 KW - Additive manufacturing KW - Laser metal deposition KW - Optical sensor KW - Optical emission spectroscopy KW - Process control PY - 2022 AN - OPUS4-55063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Veiko, V. P. A1 - Karlagina, Y. Y. A1 - Samokhvalov, A. A. A1 - Polyakov, D. S. T1 - Equilibrium model of titanium laser induced plasma in air with reverse deposition of titanium oxides N2 - A chemical-hydrodynamic model of laser induced plasma is developed to study a process of deposition of titanium oxides from titanium laser induced plasma to the titanium target surface. The model is relevant to texturing and coating of titanium bone implants that is done by scanning the ablation laser across implant surfaces. Such the procedure improves the biocompatibility and durability of the implants. The model considers plasma chemical reactions, formation of condensed species inside the plasma plume, and deposition and accumulation of these species on the ablation surface. A chemical part of the model is based on minimization of Gibbs free energy of the chemical system; it is used to calculate the chemical composition of the plasma. A hydrodynamic part uses the 2D fluid-dynamic equations that model a 3D axisymmetric plasma plume and assumes the mass and energy exchange between the plasma and the surface. The initial parameters for the model are inferred from experiment. The model shows that condensed titanium oxides, mostly TiO2, form in a peripheral plasma zone and gradually adhere to the surface during the plasma plume evolution. The model predicts the major component and thickness of the deposit and can be applied for the optimization of experiments aimed at surface modification. KW - Fluid dynamic model KW - Plasma chemistry KW - Laser ablation KW - Laser induced plasma deposition KW - Surface coating KW - Titanium dioxide PY - 2022 DO - https://doi.org/10.1016/j.sab.2022.106449 SN - 0038-6987 SN - 0584-8547 VL - 193 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-54866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Veiko, V. A1 - Karlagina, J. A1 - Samokhvalov, A. A1 - Polyakov, D. T1 - Back Deposition of Titanium Oxides under Laser Ablation of Titanium: Simulation and Experiment N2 - Titanium is widely used in medicine for implants and prostheses, thanks to its high biocompatibility, good mechanical properties, and high corrosion resistance. Pure titanium, however, has low wear resistance and may release metallic titanium into surrounding tissues. Structuring and coating its surface with oxide layers are necessary for high wear resistance and improved biocompatibility. In this work, a combination of theoretical and experimental methods was used to study processes responsible for deposition of titanium oxides during ablation of titanium in air. The deposition process was modeled via the Navier-Stokes equations that accounted for the material removal and accumulation of the deposit on the ablation surface. The chemical part was based on the equilibrium model embedded into the hydrodynamic code. Simulations showed that the most active zone of production of condensed titanium oxides were at plasma periphery whereas a zone of strong condensation of titanium metal was above the molten pool. In experiment, a pulsed Yb fiber laser was scanned across a titanium surface. The temperature and composition of the plasma were inferred from plasma emission spectra. The post-ablation surface was analyzed by SEM, TEM, STEM, AFM, and XRD. The developed model well reproduced the main features of experimental data. It was concluded that the deposition of condensed metal oxides from the plasma is a principal mechanism of formation of nanoporous oxide layer on the metal surface. The method of surface structuring and modification by nanosecond laser ablation can be developed into a useful technology that may find applications in medicine, photonics, and other areas. T2 - SciX 2022, The Federation of Analytical Chemistry and Spectroscopy Societies (FACSS) CY - Cincinnati, OH, USA DA - 02.10.2022 KW - Surface coating KW - Laser ablation KW - Plasma modeling PY - 2022 AN - OPUS4-55969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Veico, V. P. A1 - Karlagina, Yu. Yu. A1 - Samokhvalov, A. A. A1 - Polyakov, D. S. A1 - Manokhin, S. S. A1 - Radaev, M. M. A1 - Odintsova, G. V. A1 - Gornushkin, Igor B. T1 - Surface Structuring and Reverse Deposition of Nanoporous Titanium Oxides by Laser Ablation of Titanium in Air N2 - The deposition of titanium oxides during titanium laser ablation in air has been experimentally and numerically investigated. A titanium sample was irradiated by nanosecond pulses from an Yb-fber laser with a beam scanned across the sample surface for its texturing. As a result, the hierarchical structure was observed consisting of a microrelief formed by the laser ablation and a nanoporous coating formed by the reverse deposition from the laser induced plasma plume. The chemical and phase composition of the nanoporous coating, as well as the morphology and structure of the surface, were studied using scanning electron microscopy, atomic force microscopy, and X-ray microanalysis. It was found that the deposit consists mostly of porous TiO2 with 26% porosity and inclusions of TiO, Ti2O3, and Ti2O3N. Optical emission spectroscopy was used to control the plasma composition and estimate the effective temperature of plasma plume. The chemical-hydrodynamic model of laser induced plasma was developed to get a deeper insight into the deposition process. The model predicts that condensed titanium oxides, formed in peripheral plasma zones, gradually accumulate on the surface during the plasma plume evolution. A satisfactory agreement between the experimental and calculated chemical composition of the plasma plume as well as between the experimental and calculated composition and thickness of the deposited film was demonstrated. This allows a cautious conclusion that the formation of condensed oxides in the plasma and their consequent deposition onto the ablation surface are among the key mechanisms of formation of porous surface films. KW - Laser ablation KW - Laser induced plasma deposition KW - Surface coating KW - Titanium dioxide KW - Hydrodynamic model KW - Plasma chemistry KW - Emission spectroscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-548555 DO - https://doi.org/10.1007/s11090-022-10256-0 VL - 42 IS - 4 SP - 923 EP - 937 PB - Springer AN - OPUS4-54855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Kornev, R. A. A1 - Veiko, V. P. T1 - Molecule formation in reactive LIBS plasmas: model and experiment N2 - Formation and detection of molecules in laser induced plasmas (LIP) is a hot topic. In analytical plasmas like LIBS, the detection of molecules is important for identification of geological and other materials, analysis of isotopes and difficult elements (Cl, F, etc.) via molecular emission. In chemical plasmas, like PECVD (plasma enhanced chemical vapor deposition) or PLD (pulsed laser deposition), molecules formed in the plasma determine a composition and a thickness of deposits. Similarly, molecules play an important role in microstructuring and oxidizing metal surfaces by laser ablation. It is unfortunate that different communities, which utilize plasma methods and seek for solutions of similar problems, do not strongly overlap, and do not fully use knowledge accumulated by each other. In this presentation, mechanisms of formation of molecules will be analyzed on the example of LIPs used for chemical vapor deposition and metal microstructuring. Theoretical analysis includes equilibrium chemistry calculations combined with plasma hydrodynamics. First, LIP excited in a gas mixture of BCl3 or BF3 with H2 or CH4 will be analyzed; this chemical system is used for obtaining deposits of refractory solid boron and boron carbide. Second, a breakdown in the SiF4 + SiCl4 gas mixtures will be described; this method allows synthesis of fluorochlorosilanes SiFxCl4-x (x = 1, 2, 3), the good etching agents (Figure). Third, solid ablation of Mo in BF3+H2 and Ti in air will be considered aimed at obtaining deposits of high hardness MoxBy and films of TixOy on textured Ti surfaces, correspondingly. In experiment, reaction gases before and after laser illumination, and solid deposits are analyzed by optical emission spectroscopy (OES), IR and mass spectrometry (MS), SEM, X-ray, and AFM. It will be shown that the hydrodynamic-chemical model adequately predicts the composition of LIPs, zones of molecular formation, dependence on reactant stoichiometry, plasma temperature and pressure. T2 - Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Gijon, Spain DA - 29.11.2021 KW - Laser induced plasma KW - Plasma chemistry KW - Molecules formation KW - Plasma enhanced chemical deposition PY - 2021 AN - OPUS4-53850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -