TY - CONF A1 - Bradley, I. A1 - Birk, A.M. A1 - Otremba, Frank A1 - Gonzalez III, F. A1 - Prabhakaran, A. A1 - Bisby, L. T1 - Development and characterisation of an engulfing hydrocarbon pool fire test for hazardous materials pressure vessels N2 - The US Department of Transportation, Federal Railroad Administration (FRA) current regulations for rail tank cars in the United States stipulate that, for certain hazardous materials, tank cars shall have a thermal protection system capable of preventing rupture of the tank for 100 minutes when exposed to an engulfing fire with a blackbody equivalent flame temperature of 871 °C (+/- 56°C), and that tanks shall have a pressure relief device set at an appropriate level (depending on the type of tank car and contents). Pressure relief devices are a source of non-accident releases, and hence may cause serious incidents when tanks are transporting hazardous materials. Industry in North America would therefore benefit from removal of pressure relief devices on tanks transporting certain hazardous materials. Such an approach is known as full Containment, and is standard practice in Europe. In 2014 the FRA commissioned an experimental study to investigate the ability of a specific design of rail tank to resist rupture without incorporating a pressure release valve. As a precursor to tests on tanks there was a need to develop and characterise a simulated pool fire capable of reliably exposing large-scale tanks to repeatable, uniform conditions. This paper describes such a fire test setup, developed using a burner array system fuelled by liquid propane and designed to produce luminous, low velocity flames representative of those found in large hydrocarbon pool fires. The experimental set-up is described, along with the Instrumentation (directional flame thermometers, infra-red camera, and thermally massive calorimeter) and methodology used to characterise the fire. Comparisons are made against previous fire tests on vessels to assess the suitability of the experimental set-up for future vessel testing. T2 - CONFAB 2015 - 1st International conference on structural safety under fire & blast CY - Glasgow, UK DA - 02.09.2015 PY - 2015 SP - 485 EP - 494 AN - OPUS4-34545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Prabhakaran, A. A1 - Robitaille, A. A1 - Birk, A. M. A1 - Gonzalez III, F. T1 - Rail tank car total containment fire testing: results and observations N2 - The frequent incidences of Non-Accident Releases (NARs) of lading from tank cars have resulted in an increasing interest in transporting hazardous materials in total Containment conditions (i.e., no pressure relief devices). T2 - Proceedings of the 2016 joint rail conference CY - Columbia, SC, USA DA - 12.04.2016 KW - Rail tank containment fire PY - 2016 SN - 978-0-7918-4967-5 SP - 1 EP - 8 AN - OPUS4-35772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gonzalez III, F. A1 - Prabhakaran, A. A1 - Robitaille, A. A1 - Booth, G. A1 - Birk, A.M. A1 - Otremba, Frank T1 - Rail tank car total containment fire testing: planning & test development N2 - Given the frequent incidences of Non-Accident Releases (NARs) of hazardous materials from tank cars, there in an increasing interest in transporting hazardous materials in total containment conditions (i.e., no pressure relief devices). However, the ability of tank cars to meet thermal protection requirements provided in the Code of Federal Regulations under conditions of total containment has not been established. Also, the modeling tool commonly used by industry to evaluate thermal protection, AFFTAC, has not been validated under these conditions. The intent of this effort was to evaluate through a series of third-scale fire tests, the ability of tank cars to meet the thermal protection requirements under total containment conditions, and also, to validate AFFTAC for such conditions. This paper describes the test design and planning effort associated with this research, including the design and evaluation of a fire test setup to simulate a credible, fully engulfing, pool fire that is consistent and repeatable, and the design and hydro-static testing of a third-scale tank specimen. The fire design includes controls on the spatial distribution and temperature variation of the flame temperature, the heat flux, and the radiative balance, to best reflect large liquid hydrocarbon pool fire conditions that may be experienced during derailment scenarios. T2 - JRC2015 - Joint rail conference CY - San Jose, CA, USA DA - 23.03.2015 PY - 2015 SP - 5764, 1 EP - 6 AN - OPUS4-32985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -