TY - JOUR A1 - Saloga, Patrick E. J. A1 - Smales, Glen Jacob A1 - Clark, Adam H. A1 - Thünemann, Andreas T1 - Zinc Phosphate Nanoparticles Produced in Saliva N2 - This paper reports the formation of zinc phosphate nanoparticles from the artificial digestion of zinc chloride. Initially, the formation of amorphous primary particles with a mean radius of 1.1 nm is observed, alongside the formation of larger, protein stabilized aggregates. These aggregates, with a radius of gyration of 37 nm, are observed after 5 minutes of exposure to artificial saliva and are shown to be colloidally stable for a minimum time of two weeks. The initially formed primary particles are thought to consist of amorphous zinc phosphate, which is then transformed into crystalline Zn3(PO4)2·4H2O over the course of two weeks. Our results demonstrate that the interaction of inorganic salts with bodily fluids can induce the formation of de novo nanoparticles, which in turn, provides insights into how zinc‐enriched foods may also facilitate the formation of nanoparticles upon contact with saliva. As such, this may be considered as an undesirable (bio)mineralization. KW - SAXS KW - Digestion KW - Zinc phosphate PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514239 DO - https://doi.org/10.1002/ejic.202000521 IS - 38 SP - 3654 EP - 3661 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-51423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friberg, I. A1 - Clark, A. H. A1 - Ho, P. A1 - Sadokhina, N. A1 - Smales, Glen Jacob A1 - Woo, J. A1 - Auray, X. A1 - Ferri, D. A1 - Nachtegaal, M. A1 - Krocher, O. A1 - Olsson, L. T1 - Structure and performance of zeolite supported Pd for complete methane oxidation N2 - The influence of zeolite support materials and their impact on CH4 oxidation activity was studied utilizing Pd supported on H-beta and H-SSZ-13. A correlation between CH4 oxidation activity, Si/Al ratio (SAR), the type of zeolite framework, reduction-oxidation behaviour, and Pd species present was found by combining catalytic activity measurements with a variety of characterization methods (operando XAS, NH3-TPD, SAXS, STEM and NaCl titration). Operando XAS analysis indicated that catalysts with high CH4 oxidation activity experienced rapid transitions between metallic- and oxidized-Pd states when switching between rich and lean conditions. This behaviour was exhibited by catalysts with dispersed Pd particles. By contrast, the formation of ion-exchanged Pd2+ and large Pd particles appeared to have a detrimental effect on the oxidation-reduction behaviour and the conversion of CH4. The formation of ion-exchanged Pd2+ and large Pd particles was limited by using a highly siliceous beta zeolite support with a low capacity for cation exchange. The same effect was also found using a small-pore SSZ-13 zeolite due to the lower mobility of Pd species. It was found that the zeolite support material should be carefully selected so that the well-dispersed Pd particles remain, and the formation of ion-exchanged Pd2+ is minimized. KW - SAXS KW - Zeolites KW - Methane Oxidation KW - XAS KW - Catalysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529606 DO - https://doi.org/10.1016/j.cattod.2020.11.026 VL - 382 SP - 3 EP - 12 PB - Elsevier B.V. AN - OPUS4-52960 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Hodoroaba, Vasile-Dan A1 - Fontanges, R. A1 - Delvallée, A. A1 - Deumer, J. A1 - Salzmann, C. A1 - Crouzier, L. A1 - Gollwitzer, C. A1 - Klein, T. A1 - Koops, R. A1 - Sebaihi, N. A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Artous, S. A1 - Taché, O. A1 - Feltin, N. T1 - Report on full algorithm sequences for nanoparticle detection and size measurement as developed on both a physical basis and by machine learning N2 - he main objective of the nPSize project is to improve the measurement capabilities for nanoparticle size based on both measurement methods traceable to SI units and new reference materials. Two basic approaches have been used in order to develop measurement procedures resulting in traceable results of the nanoparticle size distribution: physical modelling for the methods used in the project (TSEM, SEM, AFM and SAXS) and machine learning. Physical modelling: In this part, the physical models associated with different shape measurements for the techniques TSEM, SEM, AFM and SAXS have been collected and further developed with the aim to simulate the resulting signal as measured by the individual methods. Uncertainties and traceability associated with each model were investigated and evaluated. In the following, the progress on these physical models is reported for each individual method. Machine Learning modelling: The aim of this part is to use machine learning to enable automatic measurement of nanoparticle shape from expert a-priori information only. No physical model will be used as a-priori information in this task. The accuracy and traceability of the size results obtained by each technique will be analyzed and compared with the physical modelling. A machine learning database will then be used to create automatic detection algorithms. KW - Nanoparticles KW - Particle size distribution KW - SEM KW - TSEM KW - TEM KW - SAXS KW - AFM PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546531 DO - https://doi.org/10.5281/zenodo.5807864 SP - 1 EP - 20 PB - Zenodo CY - Geneva AN - OPUS4-54653 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emamverdi, Farnaz A1 - Yin, Huajie A1 - Smales, Glen Jacob A1 - Harrison, W. J. A1 - Budd, P. M. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Polymers of intrinsic microporosity - Molecular mobility and physical aging revisited by dielectric spectroscopy and X‑ray scattering N2 - Polymers of intrinsic microporosity (PIMs) are promising candidates for the active layer in gas separation membranes due to their high permeability and reasonable permselectivity. These appealing properties originate from a microporous structure as a result of inefficient segment packing in the condensed state due to a combination of a ladder-like rigid backbone and sites of contortion. However, this class of polymers suffers from a significant decrease in the permeability with time due to physical aging, whereby typically, the permselectivity increases. The initial microporous structures approach a denser state via local rearrangements, leading to the reduction of the permeability. Hence, a detailed characterization of the molecular mobility in such materials can provide valuable information on physical aging. In this work, the dielectric behavior of PIM-1 films and their behavior upon heating (aging) were revisited by isothermal frequency scans during different heating/cooling cycles over a broad temperature range between 133 and 523 K (−140 to 250 °C). In addition, the obtained results were compared with data of samples that were annealed at ambient temperatures over different time scales. Multiple dielectric processes were observed: several relaxation processes due to local fluctuations and a Maxwell−Wagner−Sillars polarization effect related to the microporosity. The temperature dependence of the rates of all processes follows the Arrhenius law where the estimated activation energy depends on the nature of the process. The influence of the thermal history (aging) on the processes is discussed in detail. KW - Polymers of intrinsic microporosity PY - 2022 DO - https://doi.org/10.1021/acs.macromol.2c00934 VL - 55 SP - 7340 EP - 7350 PB - American Chemical Society CY - Washington, DC AN - OPUS4-55485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Smales, Glen Jacob A1 - Sprachmann, J. T1 - Datasets of Antiaromatic COFs associated with the publication "Antiaromatic Covalent Organic Frameworks Based on Dibenzopentalenes" N2 - X-ray scattering and sorption data associated with the publication "Antiaromatic Covalent Organic Frameworks Based on Dibenzopentalenes". X-ray scattering data is provided for COF and POP materials, including data from stability tests, as three-column ascii files with columns q (nm-1), I (m-1) and uncertainty on I, as well as being provided in 2θ. KW - X-ray scattering KW - SAXS KW - Covalent Organic Frameworks KW - Antiaromaticity KW - MOUSE PY - 2023 DO - https://doi.org/10.5281/zenodo.7509377 PB - Zenodo CY - Geneva AN - OPUS4-56868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -