TY - JOUR A1 - Falqueto, J. B. A1 - Clark, A. H. A1 - Štefančič, A. A1 - Smales, Glen Jacob A1 - Vaz, C. A. F. A1 - Schuler, A. J. A1 - Bocchi, N. A1 - Kazzi, M. E. T1 - High performance doped Li-rich Li1+xMn2–xO4 cathodes nanoparticles synthesized by facile, fast, and efficient microwave-assisted hydrothermal route N2 - Li-rich nanoparticles of Li1+xMn2–xO4 doped with Al, Co, or Ni are successfully synthesized using a facile, fast, and efficient microwave-assisted hydrothermal route. Synchrotron X-ray diffraction confirms the formation of the crystalline cubic spinel phase type. X-ray absorption spectroscopy analysis at the Co and Ni K- and L-edges verifies that the dopants are within the Li1+xMn2–xO4 spinel structure and are inactive during cycling in the bulk and at the surface. Moreover, we demonstrate that nanocrystallinity and cationic doping play an important role in improving the electrochemical performance with respect to LiMn2O4 microparticles. They significantly reduce the charge-transfer resistance, lower the first cycle irreversible capacity loss to 6%, and achieve a capacity retention between 85 and 90% after 380 cycles, with excellent Coulombic efficiency close to 99% without compromising the specific charge at a 5C cycling rate. Furthermore, the Mn K- and L-edges attest that after long cycling, the Mn oxidation state in the bulk differs from that at the surface caused by the Mn disproportion reaction; however, the cationic doping helps mitigate the Mn dissolution with respect to the undoped Li1+xMn2–xO4 nanoparticles, as indicated by inductively coupled plasma atomic emission spectrometry. KW - XAS KW - SAXS KW - Li-ion battery KW - Cathode material KW - Spinel KW - The MOUSE PY - 2022 DO - https://doi.org/10.1021/acsaem.2c00902 SN - 2574-0962 VL - 5 IS - 7 SP - 8357 EP - 8370 PB - ACS Publ. CY - Washington, DC AN - OPUS4-55359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprachmann, J. A1 - Wachsmuth, T. A1 - Bhosale, M. A1 - Burmeister, D. A1 - Smales, Glen Jacob A1 - Schmidt, M. A1 - Kochovski, Z. A1 - Grabicki, N. A1 - Wessling, R. A1 - List-Kratochvil, E. J. W. A1 - Esser, B. A1 - Dumele, O. T1 - Antiaromatic Covalent Organic Frameworks Based on Dibenzopentalenes N2 - Despite their inherent instability, 4n π systems have recently received significant attention due to their unique optical and electronic properties. In dibenzopentalene (DBP), benzanellation stabilizes the highly antiaromatic pentalene core, without compromising its amphoteric redox behavior or small HOMO−LUMO energy gap. However, incorporating such molecules in organic devices as discrete small molecules or amorphous polymers can limit the performance (e.g., due to solubility in the battery electrolyte solution or low internal surface area). Covalent organic frameworks (COFs), on the contrary, are highly ordered, porous, and crystalline materials that can provide a platform to align molecules with specific properties in a well-defined, ordered environment. We synthesized the first antiaromatic framework materials and obtained a series of three highly crystalline and porous COFs based on DBP. Potential applications of such antiaromatic bulk materials were explored: COF films show a conductivity of 4 × 10−8 S cm−1 upon doping and exhibit photoconductivity upon irradiation with visible light. Application as positive electrode materials in Li-organic batteries demonstrates a significant enhancement of performance when the antiaromaticity of the DBP unit in the COF is exploited in its redox activity with a discharge capacity of 26 mA h g−1 at a potential of 3.9 V vs. Li/Li+ . This work showcases antiaromaticity as a new design principle for functional framework materials. KW - SAXS KW - MOUSE KW - Covalent Organic Frameworks KW - Batteries PY - 2023 DO - https://doi.org/10.1021/jacs.2c10501 SP - 1 EP - 12 PB - ACS Publications AN - OPUS4-56958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Hodoroaba, Vasile-Dan A1 - Fontanges, R. A1 - Delvallée, A. A1 - Deumer, J. A1 - Salzmann, C. A1 - Crouzier, L. A1 - Gollwitzer, C. A1 - Klein, T. A1 - Koops, R. A1 - Sebaihi, N. A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Artous, S. A1 - Taché, O. A1 - Feltin, N. T1 - Report on full algorithm sequences for nanoparticle detection and size measurement as developed on both a physical basis and by machine learning N2 - he main objective of the nPSize project is to improve the measurement capabilities for nanoparticle size based on both measurement methods traceable to SI units and new reference materials. Two basic approaches have been used in order to develop measurement procedures resulting in traceable results of the nanoparticle size distribution: physical modelling for the methods used in the project (TSEM, SEM, AFM and SAXS) and machine learning. Physical modelling: In this part, the physical models associated with different shape measurements for the techniques TSEM, SEM, AFM and SAXS have been collected and further developed with the aim to simulate the resulting signal as measured by the individual methods. Uncertainties and traceability associated with each model were investigated and evaluated. In the following, the progress on these physical models is reported for each individual method. Machine Learning modelling: The aim of this part is to use machine learning to enable automatic measurement of nanoparticle shape from expert a-priori information only. No physical model will be used as a-priori information in this task. The accuracy and traceability of the size results obtained by each technique will be analyzed and compared with the physical modelling. A machine learning database will then be used to create automatic detection algorithms. KW - Nanoparticles KW - Particle size distribution KW - SEM KW - TSEM KW - TEM KW - SAXS KW - AFM PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546531 DO - https://doi.org/10.5281/zenodo.5807864 SP - 1 EP - 20 PB - Zenodo CY - Geneva AN - OPUS4-54653 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friberg, I. A1 - Clark, A. H. A1 - Ho, P. A1 - Sadokhina, N. A1 - Smales, Glen Jacob A1 - Woo, J. A1 - Auray, X. A1 - Ferri, D. A1 - Nachtegaal, M. A1 - Krocher, O. A1 - Olsson, L. T1 - Structure and performance of zeolite supported Pd for complete methane oxidation N2 - The influence of zeolite support materials and their impact on CH4 oxidation activity was studied utilizing Pd supported on H-beta and H-SSZ-13. A correlation between CH4 oxidation activity, Si/Al ratio (SAR), the type of zeolite framework, reduction-oxidation behaviour, and Pd species present was found by combining catalytic activity measurements with a variety of characterization methods (operando XAS, NH3-TPD, SAXS, STEM and NaCl titration). Operando XAS analysis indicated that catalysts with high CH4 oxidation activity experienced rapid transitions between metallic- and oxidized-Pd states when switching between rich and lean conditions. This behaviour was exhibited by catalysts with dispersed Pd particles. By contrast, the formation of ion-exchanged Pd2+ and large Pd particles appeared to have a detrimental effect on the oxidation-reduction behaviour and the conversion of CH4. The formation of ion-exchanged Pd2+ and large Pd particles was limited by using a highly siliceous beta zeolite support with a low capacity for cation exchange. The same effect was also found using a small-pore SSZ-13 zeolite due to the lower mobility of Pd species. It was found that the zeolite support material should be carefully selected so that the well-dispersed Pd particles remain, and the formation of ion-exchanged Pd2+ is minimized. KW - SAXS KW - Zeolites KW - Methane Oxidation KW - XAS KW - Catalysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529606 DO - https://doi.org/10.1016/j.cattod.2020.11.026 VL - 382 SP - 3 EP - 12 PB - Elsevier B.V. AN - OPUS4-52960 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Z. A1 - Villa Santos, C. A1 - Legrand, A. A1 - Haase, F. A1 - Hara, Y. A1 - Kanamori, K. A1 - Aoyama, T. A1 - Urayama, K. A1 - Doherty, C. M. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Colon, Y. J. A1 - Furukawa, S. T1 - Multiscale structural control of linked metal–organic polyhedra gel by aging-induced linkage-reorganization N2 - Assembly of permanently porous metal–organic polyhedra/cages (MOPs) with bifunctional linkers leads to soft supramolecular networks featuring both porosity and processability. However, the amorphous nature of such soft materials complicates their characterization and thus limits rational structural control. Here we demonstrate that aging is an effective strategy to control the hierarchical network of supramolecular gels, which are assembled from organic ligands as linkers and MOPs as junctions. Normally, the initial gel formation by rapid gelation leads to a kinetically trapped structure with low controllability. Through a controlled post-synthetic aging process, we show that it is possible to tune the network of the linked MOP gel over multiple length scales. This process allows control on the molecular-scale rearrangement of interlinking MOPs, mesoscale fusion of colloidal particles and macroscale densification of the whole colloidal network. In this work we elucidate the relationships between the gel properties, such as porosity and rheology, and their hierarchical structures, which suggest that porosity measurement of the dried gels can be used as a powerful tool to characterize the microscale structural transition of their corresponding gels. This aging strategy can be applied in other supramolecular polymer systems particularly containing kinetically controlled structures and shows an opportunity to engineer the structure and the permanent porosity of amorphous materials for further applications. KW - SAXS KW - Metal-organic polyhedra KW - Structural control PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532309 DO - https://doi.org/10.1039/d1sc02883a SN - 1478-6524 SN - 1742-2183 VL - 12 IS - 38 SP - NIL_1 EP - NIL_9 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-53230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emamverdi, Farnaz A1 - Yin, Huajie A1 - Smales, Glen Jacob A1 - Harrison, W. J. A1 - Budd, P. M. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Polymers of intrinsic microporosity - Molecular mobility and physical aging revisited by dielectric spectroscopy and X‑ray scattering N2 - Polymers of intrinsic microporosity (PIMs) are promising candidates for the active layer in gas separation membranes due to their high permeability and reasonable permselectivity. These appealing properties originate from a microporous structure as a result of inefficient segment packing in the condensed state due to a combination of a ladder-like rigid backbone and sites of contortion. However, this class of polymers suffers from a significant decrease in the permeability with time due to physical aging, whereby typically, the permselectivity increases. The initial microporous structures approach a denser state via local rearrangements, leading to the reduction of the permeability. Hence, a detailed characterization of the molecular mobility in such materials can provide valuable information on physical aging. In this work, the dielectric behavior of PIM-1 films and their behavior upon heating (aging) were revisited by isothermal frequency scans during different heating/cooling cycles over a broad temperature range between 133 and 523 K (−140 to 250 °C). In addition, the obtained results were compared with data of samples that were annealed at ambient temperatures over different time scales. Multiple dielectric processes were observed: several relaxation processes due to local fluctuations and a Maxwell−Wagner−Sillars polarization effect related to the microporosity. The temperature dependence of the rates of all processes follows the Arrhenius law where the estimated activation energy depends on the nature of the process. The influence of the thermal history (aging) on the processes is discussed in detail. KW - Polymers of intrinsic microporosity PY - 2022 DO - https://doi.org/10.1021/acs.macromol.2c00934 VL - 55 SP - 7340 EP - 7350 PB - American Chemical Society CY - Washington, DC AN - OPUS4-55485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Smales, Glen Jacob A1 - Sprachmann, J. T1 - Datasets of Antiaromatic COFs associated with the publication "Antiaromatic Covalent Organic Frameworks Based on Dibenzopentalenes" N2 - X-ray scattering and sorption data associated with the publication "Antiaromatic Covalent Organic Frameworks Based on Dibenzopentalenes". X-ray scattering data is provided for COF and POP materials, including data from stability tests, as three-column ascii files with columns q (nm-1), I (m-1) and uncertainty on I, as well as being provided in 2θ. KW - X-ray scattering KW - SAXS KW - Covalent Organic Frameworks KW - Antiaromaticity KW - MOUSE PY - 2023 DO - https://doi.org/10.5281/zenodo.7509377 PB - Zenodo CY - Geneva AN - OPUS4-56868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hunter, R. D. A1 - Rowlandson, J. L. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Ting, V. P. A1 - Kulak, A. A1 - Schnepp, Z. T1 - The effect of precursor structure on porous carbons produced by iron-catalyzed graphitization of biomass N2 - This paper reports a systematic study into the effect of different biomass-derived precursors on the structure and porosity of carbons prepared via catalytic graphitization. Glucose, starch and cellulose are combined with iron nitrate and heated under a nitrogen atmosphere to produce Fe3C nanoparticles, which catalyze the conversion of amorphous carbon to graphitic nanostructures. The choice of organic precursor provides a means of controlling the catalyst particle size, which has a direct effect on the porosity of the material. Cellulose and glucose produce mesoporous carbons, while starch produces a mixture of micro- and mesopores under the same conditions and proceeds via a much slower graphitization step, generating a mixture of graphitic nanostructures and turbostratic carbon. Porous carbons are critical to energy applications such as batteries and electrocatalytic processes. For These applications, a simple and sustainable route to those carbons is essential. Therefore, the ability to control the precise structure of a biomass-derived carbon simply through the choice of precursor will enable the production of a new generation of energy materials. KW - SAXS KW - Porous carbons KW - Graphitization KW - Iron nanoparticles KW - Catalysis KW - Gas sorption PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515531 DO - https://doi.org/10.1039/d0ma00692k VL - Royal Society of Chemistry SP - 1 EP - 11 AN - OPUS4-51553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wolf, J. A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Thünemann, Andreas A1 - Emmerling, Franziska T1 - Towards automation of the polyol process for the synthesis of silver nanoparticles N2 - Metal nanoparticles have a substantial impact across diferent felds of science, such as photochemistry, energy conversion, and medicine. Among the commonly used nanoparticles, silver nanoparticles are of special interest due to their antibacterial properties and applications in sensing and catalysis. However, many of the methods used to synthesize silver nanoparticles often do not result in well-defned products, the main obstacles being high polydispersity or a lack of particle size tunability. We describe an automated approach to on-demand synthesis of adjustable particles with mean radii of 3 and 5 nm using the polyol route. The polyol process is a promising route for silver nanoparticles e.g., to be used as reference materials. We characterised the as-synthesized nanoparticles using small-angle X-ray scattering, dynamic light scattering and further methods, showing that automated synthesis can yield colloids with reproducible and tuneable properties. KW - Sillver KW - Nanoparticles KW - Automated synthesis KW - Chemputer KW - Scattering KW - SAXS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546803 DO - https://doi.org/10.1038/s41598-022-09774-w VL - 12 IS - 1 SP - 1 EP - 9 PB - Nature Springer AN - OPUS4-54680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saloga, Patrick E. J. A1 - Smales, Glen Jacob A1 - Clark, Adam H. A1 - Thünemann, Andreas T1 - Zinc Phosphate Nanoparticles Produced in Saliva N2 - This paper reports the formation of zinc phosphate nanoparticles from the artificial digestion of zinc chloride. Initially, the formation of amorphous primary particles with a mean radius of 1.1 nm is observed, alongside the formation of larger, protein stabilized aggregates. These aggregates, with a radius of gyration of 37 nm, are observed after 5 minutes of exposure to artificial saliva and are shown to be colloidally stable for a minimum time of two weeks. The initially formed primary particles are thought to consist of amorphous zinc phosphate, which is then transformed into crystalline Zn3(PO4)2·4H2O over the course of two weeks. Our results demonstrate that the interaction of inorganic salts with bodily fluids can induce the formation of de novo nanoparticles, which in turn, provides insights into how zinc‐enriched foods may also facilitate the formation of nanoparticles upon contact with saliva. As such, this may be considered as an undesirable (bio)mineralization. KW - SAXS KW - Digestion KW - Zinc phosphate PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514239 DO - https://doi.org/10.1002/ejic.202000521 IS - 38 SP - 3654 EP - 3661 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-51423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - de Oliveira Guilherme Buzanich, Ana A1 - Heinekamp, Christian A1 - Smales, Glen Jacob A1 - Hodoroaba, Vasile-Dan A1 - ten Elshof, J. E. A1 - Emmerling, Franziska A1 - Stawski, Tomasz T1 - Template-free synthesis of mesoporous, amorphous transition metal phosphate materials N2 - We present how mesoporosity can be engineered in transition metal phosphate (TMPs) materials in a template-free manner. The method involves a transformation of a precursor metal phosphate phase, called M-struvite (NH4MPO4·6H2O, M = Mg2+, Ni2+, Co2+, NixCo1-x2+). It relies on the thermal decomposition of crystalline M-struvite precursors to an amorphous and simultaneously mesoporous phase, which forms while degassing of NH3 and H2O. The temporal evolution of mesoporous frameworks and the response of the metal coordination environment were followed with in-situ and ex-situ scattering and diffraction, as well as X -ray spectroscopy. Despite sharing the same precursor struvite structure, different amorphous and mesoporous structures were obtained depending on the involved transition metal. We highlight the systematic differences in absolute surface area, pore shape, pore size, and phase transitions depending on a metal cation present in the analogous M-struvites. The amorphous structures of thermally decomposed Mg-, Ni- and NixCo1-x-struvites exhibit high surface areas and pore volumes (240 m²g-1 and 0.32 cm-3 g-1 for Mg and 90 m²g-1 and 0.13 cm-3 g-1 for Ni). We propose that the low-cost, environmentally friendly M-struvites could be obtained as recycling products from industrial and agricultural wastewaters. These waste products could be then upcycled into mesoporous TMPs through a simple thermal treatment for further applications, for instance, in (electro)catalysis. KW - Struvite KW - Pphosphates KW - Transition metal KW - In-situ SAXS/WAXS KW - Mesoporosity PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569503 DO - https://doi.org/10.1039/D2NR05630E SN - 2040-3364 SP - 1 EP - 15 PB - Royal Society of Chemistry (RSC) AN - OPUS4-56950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dal Molin, E. S. A1 - Henning, L. M. A1 - Müller, J. T. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Bekheet, M. F. A1 - Gurlo, A. A1 - Simon, U. T1 - Robocasting of ordered mesoporous silica‐based monoliths: Rheological, textural, and mechanical characterization N2 - Hierarchically porous, high‐surface‐area silica materials are excellent candidates for multiple applications like catalysis and environmental remediation. Shaping these materials with additive manufacturing (AM) techniques, like robocasting, could enable their use with the benefit of on‐demand, customized shaping and maximizing performance. Herein, ordered mesoporous silica COK‐12 slurries were robocasted into monoliths, containing different ratios of uncalcined COK‐12 and sodium bentonite (0–25 wt.%). The rheology of the mixed slurries is characterized by lower flow indexes (0.69 vs. 0.32) and higher yield stresses (96 vs. 259 Pa) compared to pure COK‐12 ones. Monoliths were printed in woodpile structures and calcined at 600°C. Micro‐CT measurements showed a linear shrinkage of 25% after calcination. Mechanical characterization showed increased uniaxial strength (0.20 ± 0.07 to 1.0 ± 0.3 MPa) with increasing binder/solids ratio from 13 to 25%. The amorphous, mesoporous structure of COK‐12 was retained. The structures exhibited open porosities of 52 ± 4% and showed higher specific mesopore volumes, and increased average mesopore size (6 vs. 8 nm) compared to COK‐12. Small‐angle x‐ray scattering analysis revealed an increased lattice parameter (10.3 vs. 11.0 nm) and reduced wall thickness (3.1 nm vs. 4.1 nm) of the COK‐12 in the monoliths. These properties indicate suitability for their application as porous supports and adsorbents. KW - Industrial and Manufacturing Engineering KW - Additive manufacturing KW - OMS KW - Porous materials KW - Robocasting KW - X-ray scattering KW - MOUSE PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582503 DO - https://doi.org/10.1002/nano.202300109 VL - 4 IS - 11-12 SP - 615 EP - 631 PB - Wiley-VCH GmbH AN - OPUS4-58250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, W. A1 - Schweins, R. A1 - Nöcker, B. A1 - Kohlbrecher, J. A1 - Smales, Glen Jacob A1 - Huber, K. T1 - Comparative study of the co-assembly behaviour of 3-chloro-4-hydroxy-phenylazo dyes with DTAB N2 - The co-assembly of three one-fold negatively charged 3-chloro-4-hydroxy-phenylazo dyes (Yellow, Blue and Red) with the cationic surfactant dodecyltrimethylammoniumbromide (DTAB) was studied to probe dye–DTAB binding stoichiometry and assembly morphology. For each dye, phase separation was observed above a given dye : DTAB ratio with the ratio depending on the dye. While Yellow and DTAB showed liquid/liquid phase separation above Yellow : DTAB = 1 : 1.67, crystalline dye–DTAB complexes were observed for Blue–DTAB and Red–DTAB above Blue : DTAB = 1 : 2.56 and Red : DTAB = 1 : 2.94 respecively. In homogeneous solution, UV/vis spectroscopic investigations suggest stochiometries of Yellow : DTAB = 1 : 2, Blue : DTAB = 1 : 3 and Red : DTAB = 1 : 4. It was concluded, that Yellow exhibits the highest dye : DTAB binding stoichiometry in both, dye–surfactant complexes in the 2-phase region and in solution, whereas the lowest dye : DTAB binding stoichiometry was observed for Red–DTAB in both cases. The observed stoichiometries are inversely correlated to the impact dye addition has on the morphology of DTAB micelles. Generally, addition of dye to DTAB micelles leads to a reduction in spontaneous curvature of these micelles and to the formation of triaxial ellipsoidal or cylindrical micelles from oblate ellipsoidal DTAB micelles. At a DTAB concentration of 30 mM and a dye concentration of 5 mM, this effect was most pronounced for Red and least pronounced for Yellow, whilst Blue showed an intermediate effect. KW - Dye KW - DTAB KW - SAXS KW - Small-angle X-ray scattering KW - X-ray scattering KW - Data analysis KW - Micelle PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576978 DO - https://doi.org/10.1039/D3SM00501A SN - 1744-683X VL - 19 IS - 24 SP - 4588 EP - 4598 PB - Royal Society of Chemistry AN - OPUS4-57697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Elert, Anna Maria A1 - Chen, Yong-Cin A1 - Smales, Glen J. A1 - Topolniak, Ievgeniia A1 - Sturm, Heinz A1 - Schönhals, Andreas A1 - Szymoniak, Paulina T1 - Effects of the charge density of nanopapers based on carboxymethylated cellulose nanofibrils investigated by complementary techniques N2 - Cellulose nanofibrils (CNFs) with different charge densities were prepared and investigated by a combination of different complementary techniques sensitive to the structure and molecular dynamics of the system. The morphology of the materials was investigated by scanning electron microscopy (SEM) and X-ray scattering (SAXS/WAXS). The latter measurements were quantitatively analyzed yielding to molecular parameters in dependence of the charge density like the diameter of the fibrils, the distance between the fibrils, and the dimension of bundles of nanofibrils, including pores. The influence of water on the properties and the charge density is studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and broadband dielectric spectroscopy. The TGA measurements reveal two mass loss processes. The one at lower temperatures was related to the loss of water, and the second process at higher temperatures was related to the chemical decomposition. The resulting char yield could be correlated to the distance between the microfibrils. The DSC investigation for hydrated CNFs revealed three glass transitions due to the cellulose segments surrounded by water molecules in different states. In the second heating scan, only one broad glass transition is observed. The dielectric spectra reveal two relaxation processes. At low temperatures or higher frequencies, the β-relaxation is observed, which is assigned to localized fluctuation of the glycosidic linkage. At higher temperatures and lower frequencies, the α-relaxation takes places. This relaxation is due to cooperative fluctuations in the cellulose segments. Both processes were quantitatively analyzed. The obtained parameters such as the relaxation rates were related to both the morphological data, the charge density, and the content of water for the first time. KW - Cellulose nanofibrils PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600528 DO - https://doi.org/https://doi.org/10.1021/acsomega.4c00255 SN - 2470-1343 VL - 9 SP - 20152 EP - 20166 PB - ACS AN - OPUS4-60052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pallasch, Sebastian M. A1 - Bhosale, Manik A1 - Smales, Glen J. A1 - Schmidt, Caroline A1 - Riedel, Sibylle A1 - Zhao-Karger, Zhirong A1 - Esser, Birgit A1 - Dumele, Oliver T1 - Porous Azatruxene Covalent Organic Frameworks for Anion Insertion in Battery Cells N2 - Covalent organic frameworks (COFs) containing well-defined redox-active groups have become competitive materials for next-generation batteries. Although high potentials and rate performance can be expected, only a few examples of p-type COFs have been reported for charge storage to date with even fewer examples on the use of COFs in multivalent ion batteries. Herein, we report the synthesis of a p-type highly porous and crystalline azatruxene-based COF and its application as a positive electrode material in Li- and Mg-based batteries. When this material is used in Li-based half cells as a COF/carbon nanotube (CNT) electrode, a discharge potential of 3.9 V is obtained with discharge capacities of up to 70 mAh g−1 at a 2 C rate. In Mg batteries using a tetrakis(hexafluoroisopropyloxy)borate electrolyte, cycling proceeds with an averge discharge voltage of 2.9 V. Even at a fast current rate of 5 C, the capacity retention amounts to 84% over 1000 cycles. KW - COFs PY - 2024 DO - https://doi.org/10.1021/jacs.4c04044 VL - 146 IS - 25 SP - 17318 EP - 17324 PB - Journal of the American Chemical Society AN - OPUS4-60419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -