TY - CONF A1 - Bruno, Giovanni A1 - Serrano Munoz, Itziar A1 - Fernandez, R. A1 - Gonzalez-Doncel, G. A1 - Garces, G. T1 - A paradigm shift in the description of creep in metals can only occur through multi-scale imaging N2 - The description of creep in metals has reached a high level of complexity; fine details are revealed by all sorts of characterization techniques and different theoretical models. However, to date virtually no fully microstructure-driven quantitative description of the phenomenon is available. This has brought to interesting inconsistencies; the classic description of (secondary) creep rests on the so-called power law, which however: a- has a pre-factor spanning over 10 orders of magnitude; b- has different reported exponents for the same material; c- has no explanation for the values of such exponents. Recently, a novel description (the so-called Solid State Transformation Creep (SSTC) Model) has been proposed to tackle the problem under a different light. The model has two remarkable features: 1- it describes creep as the accumulation of elementary strains due to dislocation motion; 2- it predicates that creep is proceeding by the evolution of a fractal arrangement of dislocations. Such description, however, needs a great deal of corroborating evidence, and indeed, is still incomplete. To date, we have been able to observe and somehow quantify the fractal arrangement of microstructures through Transmission Electron Microscopy (TEM), observe the accumulation of dislocations at grain boundaries by EBSD-KAM (Electron Back-Scattered Diffraction-Kernel Angular Misorientation) analysis, quantify the kinetic character (solid state transformation) of experimental creep curves, and estimate the sub-grain size of the fractal microstructure through X-ray refraction techniques. All pieces of the mosaic seem to yield a consistent picture: we seem being on the right path to reconstruct the whole elephant by probing single parts of it. What is still missing is the bond between the various scales of investigation. T2 - Korrelative Materialcharakterisierung 2022 CY - Dresden, Germany DA - 13.10.2022 KW - X-ray refraction KW - EBSD KW - Alloys KW - TEM KW - SEM PY - 2022 AN - OPUS4-56163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Evsevleev, Sergei A1 - Sevostianov, I. A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Koos, R. A1 - Hofmann, M. A1 - Requena, G. A1 - Garcés, G. T1 - Damage and stress evolution in multi-phase metal matrix composites N2 - While there is a extensive literature on the micro-mechanical behavior of metal matrix composites (MMCs) under uniaxial applied stress, very little is available on multi-phase MMCs. In order to cast light on the reinforcement and damage processes in such multi-phase composites, an Al alloy with one and two ceramic reinforcements (planar-random oriented alumina fibers and SiC particles) were studied. In-situ compression tests during neutron diffraction experiments were used to track the load transfer among phases, while X-ray computed tomography was used to investigate pre-strained samples, in order to monitor and quantify damage. We found that damage progresses differently in composites with different orientations of the fiber mat. Because of the presence of the intermetallic network, it was observed that the second ceramic reinforcement changes the load transfer scenario only at very high applied load, when also intermetallic particles break. We rationalized the experimental results by means of a micromechanical model based on Maxwell’s homogenization scheme, and we could explain why no damage is observed in the ductile matrix under compression: the matrix finds itself in hydrostatic compression, and the Poisson’s tensile strain is totally carried by the reinforcement phases T2 - CIMTEC CY - Perugia, Italy DA - 20.06.2022 KW - Load transfer KW - Neutron Diffraction KW - Michromechanical modeling KW - Computed Tomography KW - Machine Learning PY - 2022 AN - OPUS4-55404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Evsevleev, Sergei A1 - Sevostianov, I. A1 - Mishurova, Tatiana A1 - Hofmann, M. A1 - Koos, R. A1 - Requena, G. A1 - Garces, G. T1 - Explaining Deviatoric Residual Stresses and Load Transfer in Aluminum Alloys and Composites with Complex Microstructure N2 - The residual stresses and load transfer in multiphase metal alloys and their composites (with both random planar-oriented short fibers and particles) will be shown, as studied by neutron diffraction, by X-ray computed tomography, and by a model based on the reformulation of classic Maxwell’s homogenization method. Contrary to common understanding and state-of-the-art models, we experimentally observe that randomly oriented phases possess non-hydrostatic residual stress. Moreover, we disclose that the unreinforced matrix alloy stays under hydrostatic compression even under external uniaxial compression. The recently developed modeling approach allows calculating the residual stress in all phases of the composites. It rationalizes the presence of deviatoric stresses accounting for the interaction of random oriented phases with fibers having preferential orientation. It also allows the explanation of the unconventional in-situ behavior of the unreinforced alloy and the prediction of the micromechanical behavior of other similar alloys. T2 - MLZ Konferenz 2022 CY - Lenggries, Germany DA - 31.05.2022 KW - Residual Stresses KW - Aluminium Alloys KW - Microstructures PY - 2022 AN - OPUS4-55020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Evsevleev, Sergei A1 - Sevostianov, I. A1 - Mishurova, Tatiana A1 - Cabeza, S. A1 - Koos, R. A1 - Hofmann, M. A1 - Requena, G. A1 - Garcés, G. T1 - Explaining deviatoric residual stresses and load transfer in aluminum alloys and composites with complex microstructure N2 - The residual stresses and load transfer in multiphase metal alloys and their composites (with both random planar-oriented short fibers and particles) will be shown, as studied by neutron diffraction, by X-ray computed tomography, and by a model based on the reformulation of classic Maxwell’s homogenization method. Contrary to common understanding and state-of-the-art models, we experimentally observe that randomly oriented phases possess non-hydrostatic residual stress. Moreover, we disclose that the unreinforced matrix alloy stays under hydrostatic compression even under external uniaxial compression. The recently developed modeling approach allows calculating the residual stress in all phases of the composites. It rationalizes the presence of deviatoric stresses accounting for the interaction of random oriented phases with fibers having preferential orientation. It also allows the explanation of the unconventional in-situ behavior of the unreinforced alloy and the prediction of the micromechanical behavior of other similar alloys. T2 - MLZ Conference 2022: Neutrons for Mobility CY - Lenggries, Germany DA - 31.05.2022 KW - Load transfer KW - Neutron Diffraction KW - micromechanical modeling KW - Computed tomography PY - 2022 AN - OPUS4-55405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Meinel, Dietmar A1 - Koptyug, A. A1 - Surmeneva, M. A1 - Khrapov, D. A1 - Paveleva, A. A1 - Surmenev, R. T1 - Procedures for quantitative characterization of periodic minimal surface structures (TMPSS) N2 - Additively manufactured (AM) triply periodic metallic minimum surface structures (TPMSS, from the English Triply Periodic Minimum Surface Structures) fulfill several requirements in both biomedical and engineering fields: tunable mechanical properties, low sensitivity to manufacturing defects, mechanical stability, and high energy absorption. However, they also present some quality control challenges that may prevent their successful application. In fact, optimization of the AM process is impossible without considering structural features such as manufacturing accuracy, internal defects, and surface topography and roughness. In this study, quantitative nondestructive analysis of Ti-6Al-4V alloy TPMSS was performed using X-ray computed tomography (XCT). Several new image analysis workflows are presented to evaluate the effects of buildup direction on wall thickness distribution, wall degradation, and surface roughness reduction due to chemical etching of TPMSS. It is shown that the fabrication accuracy is different for the structural elements printed parallel and orthogonal to the fabricated layers. Different strategies for chemical etching showed different powder removal capabilities and thus a gradient in wall thickness. This affected the mechanical performance under compression by reducing the yield stress. A positive effect of chemical etching is the reduction of surface roughness, which can potentially improve the fatigue properties of the components. Finally, XCT was used to correlate the amount of powder retained with the pore size of the TPMSS, which can further improve the manufacturing process. T2 - MSE 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - Surface roughness KW - Additive manufacturing KW - Computed tomography KW - Wall thickness KW - Machine learning KW - Manufacturing defects PY - 2022 AN - OPUS4-56162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Fritsch, Tobias A1 - Evans, Alexander A1 - Ulbricht, Alexander A1 - Schröder, Jakob A1 - Sprengel, Maximilian T1 - Redefining residual stress analysis to tackle the challenges posed by additively manufactured materials and structures N2 - Additively manufactured (and in particular laser powder bed fused) materials represent a manyfold challenge for the materials scientist and engineer because of their distinctive microstructure. If laser powder bed fusion is used to produce components, the complexity level increases because meso-structures (e.g., overhanging features, surface and internal defects) gain importance. Furthermore, if the main advantage of additive manufacturing, i.e., the freedom of design, is to be fully exploited, and geometrically complex structures, such as lattices, are manufactured, then such structures become meta-materials. This means that the geometry and the materials properties become equally important. This matryoshka-like (more literary than the dry “multi-scale”) complexity makes the characterization of the residual stress fields by means of diffraction methods so difficult with the current means, that new paradigms are necessary to tackle the challenge. Indeed, classic open problems acquire an extra layer of difficulty, such that new solutions need to be found and the sometimes-dormant debate needs to be re-opened. Examples include the determination of: a- the unstrained reference: this reference can become location-dependent and needs to be carefully determined; b- the so-called diffraction elastic constants, which becomes immensely challenging since even the single-crystal elastic constants are not known for additively manufactured materials. On top of this, other problems arise. The determination of the principal axes of stress becomes non-trivial because the hatching strategy sometimes dominates over the sample geometry. Even further, in complex structures, such as lattices, the textbook statement that the strain measurement in six independent directions uniquely identifies the strain tensor becomes simply invalid. The peculiar surface features of additively manufactured materials transform trivial tasks into formidable challenges: the precise alignment of a specimen in a beam or the determination of surface stresses with laboratory X-rays need to be thoroughly re-discussed and lay far from being routine tasks. In this paper, we will show a few examples of the cases mentioned above. We will demonstrate that sometimes the classic approach works very well, but other times surprising conclusions can be drawn from in-depth studies of the residual stress in additively manufactured materials. In short, we predicate that classic methods cannot be used on additively manufactured materials and structures without a critical evaluation of their validity and application range. T2 - ICRS11 CY - Nancy, France DA - 28.03.2022 KW - Neutron diffraction KW - Laser powder bed fusion KW - Diffraction elastic constants KW - Unstrained reference KW - Surface roughness KW - Porosity PY - 2022 AN - OPUS4-54642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Kupsch, Andreas A1 - Müller, Bernd R. T1 - Synchrotron X-Ray Refraction during in-situ heat treatments N2 - In this work, synchrotron X-ray refraction radiography (SXRR) was combined with in-situ heat treatment to monitor microstructure and porosity evolution as a function of temperature. The investigated material was a laser powder bed fusion (LPBF) manufactured AlSi10Mg, where the initial eutectic Si network is known to break down into larger particles with increasing temperature. Such alloy is also prone to thermally induced porosity (TIP). We show that SXRR allows detecting the changes in the Si-phase morphology upon heating, while this is currently possible only using scanning electron microscopy. SXRR also allows observing the growth of pores, usually studied via X-ray computed tomography, but on much smaller fields-of-view. Our results show the great potential of in-situ SXRR as a tool to gain in-depth knowledge of the susceptibility of any material to thermally induced damage and/or microstructure evolution over statistically relevant volumes. T2 - MSE 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - Si network KW - Al alloys KW - PBF-LB KW - X-ray refraction radiography KW - Pore nucleation PY - 2022 AN - OPUS4-56161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Laquai, René A1 - Wieder, Frank A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Serrano Munoz, Itziar T1 - The combined use of X-ray refraction and trans-mission radiography and computed tomography N2 - Alternative to conventional transmission-based radiography and computed tomography, X-ray refraction techniques are being increasingly used to detect damage in light materials. In fact, their range of application has been recently extended even to metals. The big advantage of X-ray refraction techniques is that they are able to detect nanometric defects, whose size would lie below the resolution of even state-of-the-art synchrotron-based X-ray computed tomography (SXCT). The superiority of synchrotron X-ray refraction radiography and tomography (SXRR and SXRCT) has been shown in the case of light materials, in particular composites. X-ray refraction techniques also yield a quantitifaction of the amount of damage (the so-called relative internal specific surface) and can well be compared with damage models. At the same time, it is impossible for SXRR and SXRCT to image single defects. We show that the combination of refraction- and transmission-based imaging techniques yields an impressive amount of additional information about the type and amount of defects in microstructured materials such as additively manufactured metals or metal matrix composites. We also show that the use of data fusion techniques allows the classification of defects in statistically significant representative volume elements. T2 - 11th Conference on Industrial Computed Tomography CY - Online meeting DA - 08.02.2022 KW - X-ray refraction radiography KW - Computed Tomography KW - Synchrotron radiation KW - Additive manufacturing KW - Damage evolution PY - 2022 AN - OPUS4-54327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -