TY - CONF A1 - Bruno, Giovanni T1 - Mechanical and thermal properties of aluminum titanate (AT) N2 - In this seminar I present the microstructure and micromechanical properties of diesel particulate filter materials, and then particularize them to porous microcracked aluminum titanate. I show that neutron diffraction is particularly suited for bulk studies, especially under applied load or at high temperatures. The combination of macroscopic and microscopic tests with modeling and simulation yields great added value to understand the mechanics of microcracking. T2 - Webinar DFG Hotmix CY - Online meeting DA - 14.06.2021 KW - Imaging KW - Neutron and X-ray Diffraction KW - Non-linear stress-strain KW - Anisotropy KW - Microcracking KW - Porosity PY - 2021 AN - OPUS4-52838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - 2D and 3D imaging chracterization techniques for porous ceramics N2 - The combination of microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on porous material properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of porosity in ceramics. Moreover, I will show how not-so-novel 2D characterization techniques, based X-ray refraction, can allow a great deal of insights in the damage evolution in microcracked (and porous) ceramics. I will show how X-ray refraction can detect objects (e.g. microcracks) below its own spatial resolution. Finally, I will discuss the link between the microstructural findings and the mechanical properties of porous microcracked ceramics. T2 - CIMTEC 2018 CY - Perugia, Italy DA - 04.06.2018 KW - Orientation KW - Cordierite KW - Beta-eucrytite KW - Porosity KW - Microcracking KW - Computed tomography KW - X-ray refraction PY - 2018 AN - OPUS4-45119 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni T1 - Brittle Materials in Mechanical Extremes N2 - The goal of the Special Issue “Brittle Materials in Mechanical Extremes” was to spark a discussion of the analogies and the differences between different brittle materials, such as, for instance, ceramics and concrete. Indeed, the contributions to the Issue spanned from construction materials (asphalt and concrete) to structural ceramics, reaching as far as ice. The data shown in the issue were obtained by advanced microstructural techniques (microscopy, 3D imaging, etc.) and linked to mechanical properties (and their changes as a function of aging, composition, etc.). The description of the mechanical behavior of brittle materials under operational loads, for instance, concrete and ceramics under very high temperatures, offered an unconventional viewpoint on the behavior of brittle materials. This is not at all exhaustive, but a way to pave the road for intriguing and enriching comparisons. KW - Microcracking KW - Ceramics KW - Concrete KW - Asphalt KW - Mechanicalproperties KW - Microstructure KW - Strength PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-514558 VL - 13 IS - 20 SP - 4610 PB - MDPI CY - Basel AN - OPUS4-51455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Micromechanics of internal stresses in multiphase materials Part I- Residual Stress analysis by Diffraction N2 - In this Seminar cycle I will present first diffraction methods to determine residual stress and investigate micromechanical properties of complex materials, and then particularize the treatment with applications to porous microcracked ceramics for diesel particulate filter applications. I will show that neutron diffraction is particularly suited for bulk studies, where 3D stresses are needed. The advantages to use Time-of-Flight or steady state sources will be discussed, together with the problematic of the determination of absolute RS values. Finally, the behavior of DPF materials under applied load or at high temperatures will be discussed under the combination of macroscopic and microscopic tests. T2 - ATHOR webinar "Micromechanics of internal stresses in multiphase materials" CY - Online meeting DA - 12.01.2021 KW - Porosity KW - Neutron Diffraction KW - Residual Stress KW - Non-linear stress-strain KW - Anisotropy KW - Microcracking KW - Imaging PY - 2021 AN - OPUS4-52125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Micromechanics of internal stresses in multiphase materials, Part II- Mechanical properties of microcracked and porous materials N2 - In this Seminar cycle I will present first diffraction methods to determine residual stress and investigate micromechanical properties of complex materials, and then particularize the treatment with applications to porous microcracked ceramics for diesel particulate filter applications. I will show that neutron diffraction is particularly suited for bulk studies, where 3D stresses are needed. The advantages to use Time-of-Flight or steady state sources will be discussed, together with the problematic of the determination of absolute RS values. Finally, the behavior of DPF materials under applied load or at high temperatures will be discussed under the combination of macroscopic and microscopic tests. T2 - ATHOR webinar "Micromechanics of internal stresses in multiphase materials" CY - Online meeting DA - 26.01.2021 KW - Porosity KW - Neutron Diffraction KW - Residual Stress KW - Non-linear stress-strain KW - Anisotropy KW - Microcracking KW - Imaging PY - 2021 AN - OPUS4-52126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - 2D and 3D imaging characterization techniques for porous ceramics N2 - The combination of microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on porous material properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of porosity in ceramics. Moreover, I will show how not-so-novel 2D characterization techniques, based X-ray refraction, can allow a great deal of insights in the damage evolution in microcracked (and porous) ceramics. I will show how X-ray refraction can detect objects (e.g. microcracks) below its own spatial resolution. Finally, I will discuss the link between the microstructural findings and the mechanical properties of porous microcracked ceramics. T2 - Colloques de l"universite' de Limoges, France CY - Limoges, France DA - 17.10.2018 KW - Tomography KW - X-ray refraction KW - Porous ceramics KW - Microcracking PY - 2018 AN - OPUS4-46350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Bruno, Giovanni A1 - Kachanov, M. A1 - Sevostianov, I. ED - Bruno, Giovanni ED - Altenbach, H. ED - Eremeyev, V. ED - Müller, W. ED - Gutkin, M. T1 - Micromechanical Modeling of Non-linear Stress–Strain Behavior of Polycrystalline Microcracked Ceramics N2 - We discuss the non-linear stress–strain behavior of microcracked polycrystalline ceramics under uniaxial tension and compression (displacement control). Micromechanics explanation and modeling of its basic features, such as non-linearity and hysteresis in stress–strain curves, are developed, with stable microcrack propagation and “roughness” of intergranular cracks playing critical roles in tension and crack sliding playing a critical role in compression. Experiments involving complex loading histories are explained, and themodel is shown to reproduce the basic features of the observed stress–strain curves. KW - Neutron Diffraction KW - X-ray diffraction KW - Mechanical Properties KW - X-ray refraction radiography KW - Microcracking KW - Aluminum Titanate PY - 2023 SN - 978-3-031-28743-5 U6 - https://doi.org/10.1007/978-3-031-28744-2 SN - 1869-8433 SP - 1 EP - 22 PB - Springer CY - Heidelberg AN - OPUS4-57938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni A1 - Kachanov, Mark T1 - Microstructure-property connections for porous ceramics: The possibilities offered by micromechanics N2 - Microstructure of porous ceramics is highly “irregular”: it comprises pores and microcracks of diverse shapes and orientations. This makes their quantitative modeling challenging, and one often resorts to empirical relations containing Fitting Parameters and having somewhat uncertain range of applicability. We review the substantial progress made in modeling of “irregular” microstructures that does not seem to have been sufficiently utilized in the context of ceramics. We discuss the possibilities offered by micromechanics in developing microstructure–property relations for porous microcracked ceramics. After an overview of relevant micromechanics topics, we focus on several issues of specific interest for ceramics: nonlinear stress–strain behavior, effective elastic properties, and thermally induced microcracking. We discuss extraction of microscale Parameters (such as strength of the intergranular cohesion, density of cracks and pores, etc.) from macroscopic data and identify the extent of uncertainty in this process. We also argue that there is no quantitative correlation between fracturing process and the loss of elastic stiffness. KW - Ceramics KW - Microcracking KW - Pores KW - Microstructure KW - Micromechanics KW - Intergranular strength KW - Nonlinearity KW - Stress– strain curves PY - 2016 U6 - https://doi.org/10.1111/jace.14624 SN - 0002-7820 SN - 1551-2916 VL - 99 IS - 12 SP - 3829 EP - 3852 AN - OPUS4-39355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni A1 - Shyam, A. A1 - Watkins, T. R. A1 - Pandey, A. A1 - Lara-Curzio, E. A1 - Parish, C. M. A1 - Stafford, R. J. T1 - The effect of porosity and microcracking on the thermomechanical properties of cordierite N2 - The effect of porosity and microcracking on the mechanical properties (strength, fracture toughness,Young’s modulus, and fracture energy) and thermal expansion of diesel particulate filter (DPF) gradecordierite materials has been investigated. A method to deconvolute the effect of porosity and microc-racking on Young’s modulus is proposed. In addition, the microcrack density and the pore morphologyfactor are calculated by applying a micromechanical differential scheme. The values of the investigatedmechanical properties are shown to decrease with an increase in porosity, but the thermal expansionvalues are insensitive to porosity. The variation in mechanical properties as a function of porosity leadsto distinct porosity dependence of thermal shock resistance for crack initiation and crack propagationfor DPF grade synthetic cordierite. KW - Diesel particulate filter KW - Cordierite KW - Porosity KW - Microcracking KW - Micromechanical differential scheme PY - 2015 U6 - https://doi.org/10.1016/j.jeurceramsoc.2015.08.014 VL - 2015/35 IS - 16 SP - 4557 EP - 4566 PB - Elsevier Ltd. AN - OPUS4-37973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cooper, R. A1 - Bruno, Giovanni A1 - Shyam, A. A1 - Watkins, T. A1 - Pandey, A. A1 - Wheeler, M. T1 - Effect of microcracking on the uniaxial tensile response of beta-eucryptite ceramics: Experiments and constitutive model N2 - A constitutive model for the nonlinear or “pseudoplastic” mechanical behavior in a linear-elastic solid with thermally induced microcracks is developed and applied to experimental results. The model is termed strain dependent microcrack density approximation (SDMDA) and is an extension of the modified differential scheme that describes the slope of the stress-strain curves of microcracked solids. SDMDA allows a continuous variation in the microcrack density with tensile loading. Experimental uniaxial tensile response of β-eucryptite glass and ceramics with controlled levels of microcracking is reported. It is demonstrated that SDMDA can well describe the extent of non-linearity in the experimental uniaxial tensile response of β-eucryptite with varying levels of microcracking. The advantages of the SDMDA are discussed in regard to tensile loading. KW - Microcracking KW - β-eucryptite KW - Young's modulus KW - Modeling KW - Tensile behavior PY - 2017 U6 - https://doi.org/10.1016/j.actamat.2017.06.033 SN - 1359-6454 SN - 1873-2453 VL - 135 SP - 361 EP - 371 PB - Elsevier Ltd. AN - OPUS4-40859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kupsch, Andreas A1 - Laquai, René A1 - Müller, Bernd R. A1 - Paciornik, S. A1 - Horvath, J. A1 - Tushtev, K. A1 - Rezwan, K. A1 - Bruno, Giovanni T1 - Evolution of Damage in All-Oxide Ceramic Matrix Composite After Cyclic Loading N2 - While structural ceramics usually display a brittle mechanical behavior, their composites may show nonlinearities, mostly due to microcracking. Herein, the stiffness evolution of a sandwich-like laminate of an Al2O3 15%vol. ZrO2 matrix reinforced with Nextel 610 fibers is studied as a function of number of cycles N in tension. The stiffness of the composite degrades with increasing N, indicating microcracking. However, synchrotron X-ray refraction radiography shows that the internal specific surface of such cracks varies differently. A modeling strategy is developed for the calculation of the equivalent stiffness of mixtures (first the matrix and then the sandwich), based on the Voigt and Reuß schemes. The Bruno–Kachanov model is then used to estimate the initial microcrack density in the matrix (due to the thermal expansion mismatch) and the amount of microcracking increase upon cyclic loading. The stiffness in the composite degrades dramatically already after 20 000 cycles but then remains nearly constant. The combination of mechanical testing, quantitative imaging analysis, and modeling provides insights into the damage mechanisms acting: microcrack propagation is more active than microcrack initiation upon cyclic loading, but the second also occurs. This scenario is similar but not equal to previous results on porous and microcracked ceramics. KW - Ceramic matrix composites KW - Homogenization schemes KW - Microcracking KW - Nonlinear behavior KW - Synchrotron X-ray refraction radiography PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-534541 SN - 1527-2648 SN - 1438-1656 VL - 24 IS - 6 SP - 2100763 -1 EP - 2100763 -13 PB - VCH GmbH CY - Weinheim AN - OPUS4-53454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laquai, René A1 - Gouraud, F. A1 - Müller, Bernd R. A1 - Huger, M. A1 - Chotard, T. A1 - Antou, G. A1 - Bruno, Giovanni T1 - Evolution of Thermal Microcracking in Refractory ZrO2-SiO2 after Application of External Loads at High Temperatures N2 - Zirconia-based cast refractories are widely used for glass furnace applications. Since they have to withstand harsh chemical as well as thermo-mechanical environments, internal stresses and microcracking are often present in such materials under operating conditions (sometimes in excess of 1700 °C). We studied the evolution of thermal (CTE) and mechanical (Young’s modulus) properties as a function of temperature in a fused-cast refractory containing 94 wt.% of monoclinic ZrO2 and 6 wt.% of a silicate glassy phase. With the aid of X-ray refraction techniques (yielding the internal specific surface in materials), we also monitored the evolution of microcracking as a function of thermal cycles (crossing the martensitic phase transformation around 1000 °C) under externally applied stress. We found that external compressive stress leads to a strong decrease of the internal surface per unit volume, but a tensile load has a similar (though not so strong) effect. In agreement with existing literature on -eucryptite microcracked ceramics, we could explain These phenomena by microcrack closure in the load direction in the compression case, and by microcrack propagation (rather than microcrack nucleation) under tensile conditions. KW - Electro-fused zirconia KW - Microcracking KW - Synchrotron x-ray refraction radiography (SXRR) KW - Thermal expansion PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-477431 VL - 12 IS - 7 SP - 1 EP - 15 PB - MDPI AN - OPUS4-47743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laquai, René A1 - Schaupp, Thomas A1 - Griesche, Axel A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Hannemann, Andreas A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Quantitative analysis of hydrogen-assisted microcracking in duplex stainless steel through X-ray refraction 3D imaging N2 - While the problem of the identification of mechanisms of hydrogen assisted damage has and is being thoroughly studied, the quantitative analysis of such damage still lacks suitable tools. In fact, while, for instance, electron microscopy yields excellent characterization, the quantitative analysis of damage requires at the same time large field-of-views and high spatial resolution. Synchrotron X-ray refraction techniques do possess both features. In this work, we show how synchrotron X-ray refraction computed tomography (SXRCT) can quantify damage induced by hydrogen embrittlement in a lean duplex steel, yielding results that overperform even those achievable by synchrotron X-ray absorption computed tomography. As already reported in literature, but this time using a non-destructive technique, we show that the hydrogen charge does not penetrate to the center of tensile specimens. By the comparison between virgin and hydrogen-charged specimens, we deduce that cracks in the specimen bulk are due to the rolling process rather than hydrogen-assisted. We show that (micro)cracks propagate from the surface of tensile specimens to the interior with increasing applied strain, and we deduce that a significant crack propagation can only be observed short before rupture. KW - 2101 duplex stainless steel KW - Hydrogen embrittlement KW - Synchrotron radiation KW - X-ray refraction KW - Computed tomography KW - Microcracking PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-542811 SN - 1438-1656 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -