TY - JOUR A1 - Bruno, Giovanni A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Garcés, G. A1 - Requena, G. T1 - The role of reinforcement orientation on the damage evolution of AlSi12CuMgNi +15% Al2O3 under compression N2 - Internal damage of an AlSi12CuMgNi alloy reinforced with planar randomshort fibres has been investigated after compression. This damage strongly influences the load partition between matrix and reinforcement. For fibres perpendicular to the applied load, breakage and interconnected cracks appear in significantly higher volume fraction than with fibres parallel to load. KW - Metal Matrix Composites KW - Damage KW - Load partition KW - Synchrotron CT KW - Neutron diffraction PY - 2016 VL - 122 SP - 115 EP - 118 PB - Elsevier Ltd. AN - OPUS4-37975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Cabeza, Sandra A1 - Kromm, Arne A1 - Stegemann, Robert A1 - Lyamkin, Viktor A1 - Boin, Mirko T1 - Neutron diffraction: the forgotten non-destructive technique for residual stress analysis … and more N2 - 3-D Stress Analysis (Bulk) Stress mapping Thick (and thin) films & Interfaces Bulk high temperature Real time In-situ testing: Large sample environment (Stress rigs, Furnaces, …) Neutrons and Synchrotron Radiation allow all this because they are FASTER , DEEPER and MORE PRECISE than lab equipment (Flux)(Energy)(Parallel Beam) T2 - World Non Destructive Testing CY - München, Germany DA - 11.06.2016 KW - Neutron diffraction KW - Stress analysis PY - 2016 AN - OPUS4-38396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stegemann, Robert A1 - Cabeza, Sandra A1 - Lyamkin, V. A1 - Bruno, Giovanni A1 - Pittner, Andreas A1 - Wimpory, Robert A1 - Boin, M. A1 - Kreutzbruck, Marc T1 - Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings N2 - The residual stress distribution of tungsten inert gas welded S235JRC+C plates was determined by means of neutron diffraction(ND). Large longitudinal residual stresses with maxima around 600 MPa were found. With these results as reference, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors was discussed. The experiments performed indicate a correlation between changes in residual stresses (ND) and the normal component of local residual magnetic stray fields (GMR). Spatial variations in the magnetic field strength perpendicular to the welds are in the order of the magnetic field of the earth. KW - GMR KW - Magnetic stray field KW - Neutron diffraction KW - Residual stress KW - TIG-welding PY - 2017 U6 - https://doi.org/10.1016/j.jmmm.2016.11.102 SN - 0304-8853 SN - 1873-4766 VL - 426 SP - 580 EP - 587 PB - Elsevier CY - Amsterdam AN - OPUS4-38678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Nadammal, Naresh A1 - Kromm, Arne A1 - Bode, Johannes A1 - Haberland, C. A1 - Bruno, Giovanni T1 - An assessment of bulk residual stress in selective laser melted Inconel 718 N2 - Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in the bulk of IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-build condition (on a build plate) and after removal from the build plate. The absolute values of all stress components decreased after removal from the build plate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component depending on the thermal gradient in the respective direction. T2 - ECNDT 2018 CY - Göteborg, Sweden DA - 11.06.2018 KW - Residual stress KW - Selective laser melting KW - Neutron diffraction KW - IN718 PY - 2018 UR - http://cdn.ecndt2018.com/wp-content/uploads/2018/05/ecndt-0315-2018-File001.pdf SP - 1 AN - OPUS4-45325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Garces, G. A1 - Requena, G. A1 - Bruno, Giovanni A1 - Sevostianov, I. T1 - Stress-induced damage evolution in cast AlSi12CuMgNi alloy with one- and two ceramic reinforcements N2 - Two composites, consisting of an as-cast AlSi12CuMgNi alloy reinforced with 15%vol. Al2O3 short fibres and with 7%vol. Al2O3 short fibres + 15%vol. SiC particles were studied. Synchrotron computed tomography disclosed distribution, orientation, and volume fraction of the different phases. In-situ compression tests during neutron diffraction in direction parallel to the fibres plane revealed the load partition between phases. Internal damage (fragmentation) of the Si phase and Al2O3 fibres was directly observed in CT reconstructions. Significant debonding between Al-matrix and SiC particles was also found. Finally, based on the Maxwell scheme, a micro-mechanical model was utilized for the new composite with two ceramic reinforcements; it rationalizes the experimental data, and predicts the evolution of all internal stress components in each phase. KW - Computed tomography KW - Metal matrix composite KW - Load partition KW - Neutron diffraction PY - 2017 U6 - https://doi.org/10.1007/s10853-017-1182-7 SN - 0022-2461 SN - 1573-4803 VL - 52 IS - 17 SP - 10198 EP - 10216 PB - Springer AN - OPUS4-40572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stegemann, Robert A1 - Cabeza, Sandra A1 - Pelkner, Matthias A1 - Lyamkin, Viktor A1 - Sonntag, Nadja A1 - Bruno, Giovanni A1 - Skrotzki, Birgit A1 - Kreutzbruck, Marc T1 - Evaluation of high spatial resolution imaging of magnetic stray fields for early damage detection N2 - The paper discusses the evaluation of elastic and plastic strain states in two low-carbon steels of the same steel group with high spatial resolution GMR (giant magneto resistance) sensors. The residual stress distributions of tungsten inert gas welded plates were determined by means of neutron diffraction as a reference. The normal component of local residual magnetic stray fields arise in the vicinity of the positions of maximum stress. The experiments performed on flat tensile specimen indicate that the boundaries of plastic deformations are a source of stray fields. The spatial variations of magnetic stray fields for both the weld and the tensile samples are in the order of the earths magnetic field. T2 - 43rd Annual Review of Progress in Quantitative Nondestructive Evaluation, Volume 36 CY - Atlanta, Georgia, USA DA - 17.07.2016 KW - Plastic deformation KW - GMR KW - Neutron diffraction KW - Residual stress KW - Microstructure KW - Low carbon steel KW - TIG weld PY - 2017 SN - 978-0-7354-1474-7 U6 - https://doi.org/10.1063/1.4974688 SN - 0094-243X VL - 1806 IS - 1 SP - Article UNSP 110010-1 EP - 10 PB - AIP Publishing CY - Melville, NY 11747 AN - OPUS4-39279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Koos, R. A1 - Sevostianov, I. A1 - Garces, G. A1 - Requena, G. A1 - Fernández, R. A1 - Bruno, Giovanni T1 - The role of intermetallics in stress partitioning and damage evolution of AlSi12CuMgNi alloy N2 - Load partitioning between phases in a cast AlSi12CuMgNi alloy was investigated by in-situ compression test during neutron diffraction experiments. Computed tomography (CT) was used to determine volume fractions of eutectic Si and intermetallic (IM) phases, and to assess internal damage after ex-situ compression tests. The CT reconstructed volumes showed the interconnectivity of IM phases, which build a 3D network together with eutectic Si. Large stresses were found in IMs, revealing their significant role as a reinforcement for the alloy. An existing micromechanical model based on Maxwell scheme was extended to the present case, assuming the alloy as a three-phase composite (Al matrix, eutectic Si, IM phases). The model agrees well with the experimental data. Moreover, it allows predicting the principal stresses in each phase, while experiments can only determine stress differences between the axial and radial sample directions. Finally, we showed that the addition of alloying elements not only allowed developing a 3D interconnected network, but also improved the strength of the Al matrix, and the ability of the alloy constituents to bear mechanical load. KW - Aluminum alloys KW - Neutron diffraction KW - Micromechanical modeling KW - Internal stress KW - Computed tomography PY - 2018 U6 - https://doi.org/10.1016/j.msea.2018.08.070 VL - 736 SP - 453 EP - 464 PB - Elsevier B.V. AN - OPUS4-45927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadammal, Naresh A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Kromm, Arne A1 - Seyfert, Christoph A1 - Farahbod, Lena A1 - Haberland, Christoph A1 - Schneider, Judith Ann A1 - Portella, Pedro Dolabella A1 - Bruno, Giovanni T1 - Effect of hatch length on the development of microstructure, texture and residual stresses in selective laser melted superalloy Inconel 718 N2 - In the present study, samples fabricated by varying the deposition hatch length during selective laser melting of nickel based superalloy Inconel 718 were investigated. Microstructure and texture of these samples was characterized using scanning electron microscopy, combined with electron back-scattered diffraction, and residual stress assessment, using neutron diffraction method. Textured columnar grains oriented along the sample building direction were observed in the shorter hatch length processed sample. A ten-fold increase in the hatch length reduced the texture intensity by a factor of two attributed to the formation of finer grains in the longer hatch length sample. Larger gradients of transverse residual stress in the longer hatch length sample were also observed. Along the build direction, compressive stresses in the shorter hatch length and negligible stresses for the longer hatch length specimen were observed. Changes to the temperature gradient (G) in response to the hatch length variation, influenced the G to growth rate (R) ratio and the product G × R, in agreement with the microstructures and textures formed. For the residual stress development, geometry of the part also played an important role. In summary, tailored isotropy could be induced in Inconel 718 by a careful selection of parameters during selective laser melting. KW - Additive manufacturing KW - Nickel-based superalloy KW - Microstructure and texture KW - Residual stress KW - Electron back-scattered diffraction KW - Neutron diffraction PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0264127517308018 U6 - https://doi.org/10.1016/j.matdes.2017.08.049 SN - 0264-1275 VL - 134 SP - 139 EP - 150 PB - Elsevier CY - Oxford, UK AN - OPUS4-41606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stegemann, Robert A1 - Cabeza, Sandra A1 - Pelkner, Matthias A1 - Lyamkin, Viktor A1 - Pittner, Andreas A1 - Werner, Daniel A1 - Wimpory, R. A1 - Boin, M. A1 - Kreutzbruck, Marc A1 - Bruno, Giovanni T1 - Influence of the microstructure on magnetic stray fields of low-carbon steel welds N2 - This study examines the relationship between the magnetic mesostructure with the microstructure of low carbon steel tungsten inert gas welds. Optical microscopy revealed variation in the microstructure of the parent material, in the heat affected and fusion zones, correlating with distinctive changes in the local magnetic stray fields measured with high spatial resolution giant magneto resistance sensors. In the vicinity of the heat affected zone high residual stresses were found using neutron diffraction. Notably, the gradients of von Mises stress and triaxial magnetic stray field modulus follow the same tendency transverse to the weld. In contrast, micro-X-ray fluorescence characterization indicated that local changes in element composition had no independent effect on magnetic stray fields. KW - TIG-welding KW - GMR sensors KW - Magnetic stray field KW - Neutron diffraction KW - Residual stress KW - Microstructure KW - Low carbon steel PY - 2018 U6 - https://doi.org/10.1007/s10921-018-0522-0 SN - 0195-9298 SN - 1573-4862 VL - 37 IS - 3 SP - 66,1 EP - 18 PB - Springer US CY - New York AN - OPUS4-45855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -