TY - CONF A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Hentschel, M. P. A1 - Lange, A. A1 - Trappe, Volker A1 - Laquai, René A1 - Shashev, Yury A1 - Evsevleev, Sergei A1 - Bruno, Giovanni T1 - Progress survey of X-Ray refraction imaging techniques N2 - The most substantial innovations in radiographic imaging techniques of the last two decades aim at enhanced image contrast of weakly absorbing micro and nano structures by taking advantage of X-ray refraction effects occurring at outer and inner surfaces. The applications range from fibre reinforced plastics to biological tissues. These techniques comprise, among others, X-ray refraction topography, diffraction enhanced imaging, phase contrast imaging, Talbot-Lau grating interferometry, and refraction enhanced imaging. They all make use of selective beam deflections up to a few minutes of arc: the X-ray refraction effect. In contrast to diffraction, this type of interaction has a 100 % scattering cross section, as shown experimentally. Since X-ray refraction is very sensitive to the orientation of interfaces, it is additionally a tool to detect, e.g., fibre or pore orientation. If the detector resolution exceeds the size of (small) individual features, one detects the integral information (of inner surfaces) within the gauge volume. We describe the above-mentioned techniques, and show their experimental implementation in the lab and at a synchrotron source. We also show strategies for data processing and quantitative analysis. T2 - 19th World Conference on Non-Destructive Testing CY - Munich, Germany DA - 13.06.2016 KW - grating KW - topography KW - refraction KW - X-ray PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-366194 SN - 978-3-940283-78-8 VL - 2016/158 SP - We.3.B.2, 1 EP - 9 AN - OPUS4-36619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artzt, K. A1 - Mishurova, Tatiana A1 - Bauer, P.-P. A1 - Gussone, J. A1 - Barriobero-Vila, P. A1 - Evsevleev, Sergei A1 - Bruno, Giovanni A1 - Requena, G. A1 - Haubrich, J. T1 - Pandora’s Box–Influence of Contour Parameters on Roughness and Subsurface Residual Stresses in Laser Powder Bed Fusion of Ti-6Al-4V N2 - The contour scan strategies in laser powder bed fusion (LPBF) of Ti-6Al-4V were studied at the coupon level. These scan strategies determined the surface qualities and subsurface residual stresses. The correlations to these properties were identified for an optimization of the LPBF processing. The surface roughness and the residual stresses in build direction were linked: combining high laser power and high scan velocities with at least two contour lines substantially reduced the surface roughness, expressed by the arithmetic mean height, from values as high as 30 μm to 13 μm, while the residual stresses rose from ~340 to about 800 MPa. At this stress level, manufactured rocket fuel injector components evidenced macroscopic cracking. A scan strategy completing the contour region at 100 W and 1050 mm/s is recommended as a compromise between residual stresses (625 MPa) and surface quality (14.2 μm). The LPBF builds were monitored with an in-line twin-photodiode-based melt pool monitoring (MPM) system, which revealed a correlation between the intensity quotient I2/I1, the surface roughness, and the residual stresses. Thus, this MPM system can provide a predictive estimate of the surface quality of the samples and resulting residual stresses in the material generated during LPBF. KW - Additive manufacturing KW - Ti-6Al-4V KW - Contour scan strategy KW - Surface roughness KW - Melt pool monitoring KW - Residual stress KW - Synchrotron X-ray diffraction PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510585 DO - https://doi.org/10.3390/ma13153348 VL - 13 IS - 15 SP - 3348 AN - OPUS4-51058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shashev, Yury A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Evsevleev, Sergei A1 - Müller, Bernd R. A1 - Osenberg, Markus A1 - Manke, Ingo A1 - Hentschel, Manfred P. A1 - Bruno, Giovanni T1 - Optimizing the visibility of X-ray phase grating interferometry N2 - The performance of grating interferometers coming up now for Imaging interfaces within materials depends on the efficiency (visibility) of their main component, namely the phase grating. Therefore, experiments with monochromatic synchrotron radiation and corresponding simulations are carried out. The visibility of a Phase grating is optimized by different photon energies, varying detector to grating distances and continuous rotation of the phase grating about the grid lines. Such kind of rotation changes the projected grating shapes, and thereby the distribution profiles of phase shifts. This yields higher visibilities than derived from ideal rectangular shapes. By continuous grating rotation and variation of the propagation distance, we achieve 2D visibility maps. Such maps provide the visibility for a certain combination of grating orientation and detector position. Optimum visibilities occur at considerably smaller distances than in the standard setup. KW - Synchrotron, BAMline KW - Talbot-Lau interferometer KW - X-ray imaging KW - X-ray refraction KW - Grating interferometry KW - X-ray phase contrast PY - 2017 DO - https://doi.org/10.3139/120.111097 SN - 0025-5300 VL - 59 IS - 11-12 SP - 974 EP - 980 PB - Hanser Verlag AN - OPUS4-42955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tsamos, Athanasios A1 - Evsevleev, Sergei A1 - Bruno, Giovanni T1 - Noise and blur removal from corrupted X-ray computed tomography scans: A multilevel and multiscale deep convolutional framework approach with synthetic training data (BAM SynthCOND) N2 - Regardless of the experimental care practiced in acquiring X-ray computed tomography (XCT) data, artifacts might still exist, such as noise and blur. This is typical for fast XCT data acquisitions (e.g., in-situ investigations), or low-dose XCT. Such artifacts can complicate subsequent analysis of the data. Digital filters can moderately cure extensive artifacts. The selection of filter type, intensity, and order of application is not always straight forward. To tackle these problems, a complete sequential multilevel, multi-scale framework: BAM SynthCOND, employing newly designed deep convolutional neural networks (DCNNs), was formulated. Although data conditioning with neural networks is not uncommon, the main complication is that completely artifact-free XCT data for training do not exist. Thus, training data were acquired from an in-house developed library (BAM SynthMAT) capable of generating synthetic XCT material microstructures. Some novel DCNN architectures were introduced (2D/3D ACEnet_Denoise, 2D/3D ACEnet_Deblur) along with the concept of Assertive Contrast Enhancement (ACE) training, which boosts the performance of neural networks trained with continuous loss functions. The proposed methodology accomplished very good generalization from low resemblance synthetic training data. Indeed, denoising, sharpening (deblurring), and even ring artifact removal performance were achieved on experimental post-CT scans of challenging multiphase Al-Si Metal Matrix Composite (MMC) microstructures. The conditioning efficiencies were: 92% for combined denoising/sharpening, 99% for standalone denoising, and 95% for standalone sharpening. The results proved to be independent of the artifact intensity. We believe that the novel concepts and methodology developed in this work can be directly applied on the CT projections prior to reconstruction, or easily be extended to other imaging techniques such as: Microscopy, Neutron Tomography, Ultrasonics, etc. KW - XCT Data Conditioning KW - Denoising Deblurring Sharpening KW - Deep Convolutional Neural Network (DCNN) KW - Synthetic Training Data KW - ACEnet KW - Metal Matrix Composite (MMC) PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579129 DO - https://doi.org/10.1016/j.tmater.2023.100011 VL - 2 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-57912 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mehta, B. A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Markötter, Henning A1 - Bruno, Giovanni A1 - Hryha, E. A1 - Nyborg, L. A1 - Virtanen, E. T1 - Microstructure, mechanical properties and fracture mechanisms in a 7017 aluminium alloy tailored for powder bed fusion – laser beam N2 - This study addressed a 7017 Al-alloy tailored for powder bed fusion – laser beam (PBF-LB) process. The alloy was prepared by mixing 3 wt% Zr and 0.5 wt% TiC powder to standard pre-alloyed 7017 grade aluminium powder. This made printing of the alloys possible avoiding solidification cracking in the bulk and achieving high relative density (99.8 %). Such advanced alloys have significantly higher Young’s modulus (>80 GPa) than conventional Al-alloys (70–75 GPa), thus making them attractive for applications requiring high stiffness. The resulting microstructure in as-printed condition was rich in particles originating from admixed powders and primary precipitates/inclusions originating from the PBF-LB process. After performing a T6-like heat treatment designed for the PBF-LB process, the microstructure changed: Zr-nanoparticles and Fe- or Mg/Zn- containing precipitates formed thus providing 75 % increase in yield strength (from 254 MPa to 444 MPa) at the cost of decreasing ductility (∼20 % to ∼9 %). In-situ tensile testing combined with SXCT, and ex-situ tensile testing combined with fracture analysis confirmed that the fracture initiation in both conditions is highly dependent on defects originated during printing. However, cracks are deflected from decohesion around Zr-containing inclusions/precipitates embedded in the Al-matrix. This deflection is seen to improve the ductility of the material. KW - Additive manufacturing KW - Powder bed fusion Laser beam KW - X-ray computed tomography KW - Strengthening mechanisms KW - Crack propagation KW - Zirconium PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568243 DO - https://doi.org/10.1016/j.matdes.2023.111602 SN - 0264-1275 VL - 226 SP - 1 EP - 14 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-56824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Artzt, K. A1 - Haubrich, J. A1 - Sevostianov, I. A1 - Requena, G. A1 - Bruno, Giovanni T1 - Micromechanical behavior of annealed Ti-6Al-4V produced by Laser Powder Bed Fusion N2 - The micromechanical behavior of an annealed Ti-6Al-4V material produced by Laser Powder Bed Fusion was characterized by means of in-situ synchrotron X-ray diffraction during a tensile test. The lattice strain evolution was obtained parallel and transversal to the loading direction. The elastic constants were determined and compared with the conventionally manufactured alloy. In the plastic regime, a lower plastic anisotropy exhibited by the lattice planes was observed along the load axis (parallel to the building direction) than in the transverse direction. Also, the load transfer from α to β phase was observed, increasing global ductility of the material. The material seems to accumulate a significant amount of intergranular strain in the transverse direction. KW - Additive manufacturing KW - Ti-6Al-4V KW - Anisotropy KW - Intergranular strain KW - Synchrotron X-ray diffraction PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547406 DO - https://doi.org/10.1080/26889277.2022.2063763 VL - 2 IS - 1 SP - 186 EP - 201 PB - Taylor & Francis AN - OPUS4-54740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Surmeneva, M. A1 - Koptyug, A. A1 - Khrapov, D. A1 - Ivanov, Yuriy A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Prymak, O. A1 - Loza, K. A1 - Epple, M. A1 - Bruno, Giovanni A1 - Surmenev, R. T1 - In situ synthesis of a binary Ti–10at% Nb alloy by electron beam melting using a mixture of elemental niobium and titanium powders N2 - This study reports the results of the preliminary assessment to fabricate Ti-10at% Nb alloy by electron beam melting (EBM®) from a blend of elemental Nb and Ti powders. The microstructure of the EBM-manufactured Ti-10at% Nb alloys is sensitive to the following factors: different sintering properties of Nb and Ti powders, powder particle properties, material viscosities at varying melt pool temperatures, β-stabilizer element content and the EBM® process parameters. Three phases were observed in as-manufactured Ti-10at% Nb alloy: μm-size Nb phase, a Nb-rich β-solid solution surrounding Nb phase, lamellar structured α-phase and β-solid solution with different distribution and volume fraction. Thus, the combination of powder particle characteristics, very short time material spends in molten condition and sluggish kinetics of mixing and diffusional process in Ti-Nb alloy results in heterogeneous microstructures depending on the local Nb content in the powder blend and the EBM® process conditions. KW - Additive manufacturing KW - Electron beam melting KW - Ti-Nb alloy KW - In situ alloying PY - 2020 DO - https://doi.org/10.1016/j.jmatprotec.2020.116646 VL - 282 SP - 116646 PB - Elsevier B.V. AN - OPUS4-50457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Mehta, B. A1 - Nyborg, L. A1 - Virtanen, E. A1 - Markötter, Henning A1 - Hryha, E. A1 - Bruno, Giovanni T1 - Failure Mechanisms Investigation by Means of in-situ Synchrotron Computed Tomography in Aluminum MMC-based Alloy Tailored for Additive Manufacturing (AM) N2 - The availability of high-performance Al alloys in AM is limited due to difficulties in printability, requiring both the development of synergetic material and AM process to mitigate problems such as solidification cracking during laser powder bed fusion (LPBF). The goal of this work was to investigate the failure mechanism in a LPBF 7017 Aluminium alloy + 3 wt% Zr + 0.5 wt% TiC. The processing leads to different categories of Zr-rich inclusions, precipitates and defects. T2 - Alloys for Additive Manufacturing Symposium 2022 (AAMS22) CY - Munich, Germany DA - 11.09.2022 KW - Additive manufacturing KW - Laser powder bed fusion KW - Synchrotron X-ray computed tomography KW - MMC PY - 2022 AN - OPUS4-56110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Evsevleev, Sergei A1 - Sevostianov, I. A1 - Mishurova, Tatiana A1 - Hofmann, M. A1 - Garcés, G. A1 - Bruno, Giovanni T1 - Explaining Deviatoric Residual Stresses in Aluminum Matrix Composites with Complex Microstructure N2 - The residual stresses in multiphase metal Matrix composites with both random planar-oriented short fibers and particles were studied by neutron diffraction and by a model based on the reformulation of classic Maxwell’s homogenization method. Contrary to common understanding and state-of-the-art models, we experimentally observed that randomly oriented phases possess non-hydrostatic residual stress. The recently developed modeling Approach allows calculating the residual stress in all phases of the composites. It rationalizes the presence of deviatoric stresses Accounting for the interaction of random oriented phases with fibers having preferential orientation. KW - Metal matrix composite KW - Residual stress KW - Deviatoric KW - Micromechanics PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506472 DO - https://doi.org/10.1007/s11661-020-05697-1 VL - 51 IS - 6 SP - 3104 EP - 3113 PB - Springer AN - OPUS4-50647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D. A1 - Kozadayeva, M. A1 - Manabaev, K. A1 - Panin, A. A1 - Sjöström, W. A1 - Koptyug, A. A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Meinel, Dietmar A1 - Bruno, Giovanni A1 - Cheneler, D. A1 - Surmenev, R. A1 - Surmeneva, M. T1 - Different approaches for manufacturing Ti-6Al-4V alloy with triply periodic minimal surface sheet-based structures by electron beam melting N2 - Targeting biomedical applications, Triply Periodic Minimal Surface (TPMS) gyroid sheet-based structures were successfully manufactured for the first time by Electron Beam Melting in two different production Themes, i.e., inputting a zero (Wafer Theme) and a 200 µm (Melt Theme) wall thickness. Initial assumption was that in both cases, EBM manufacturing should yield the structures with similar mechanical properties as in a Wafer-mode, as wall thickness is determined by the minimal beam spot size of ca 200 µm. Their surface morphology, geometry, and mechanical properties were investigated by means of electron microscopy (SEM), X-ray Computed Tomography (XCT), and uniaxial tests (both compression and tension). Application of different manufacturing Themes resulted in specimens with different wall thicknesses while quasi-elastic gradients for different Themes was found to be of 1.5 GPa, similar to the elastic modulus of human cortical bone tissue. The specific energy absorption at 50% strain was also similar for the two types of structures. Finite element simulations were also conducted to qualitatively analyze the deformation process and the stress distribution under mechanical load. Simulations demonstrated that in the elastic regime wall, regions oriented parallel to the load are primarily affected by deformation. We could conclude that gyroids manufactured in Wafer and Melt Themes are equally effective in mimicking mechanical properties of the bones. KW - Electron beam melting KW - Scaffold KW - Lightweight structures KW - Computed tomography PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531595 DO - https://doi.org/10.3390/ma14174912 SN - 1996-1944 VL - 14 IS - 17 SP - 1 EP - 21 PB - MDPI CY - Basel AN - OPUS4-53159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -