TY - CONF A1 - Bruno, Giovanni A1 - Serrano Munoz, Itziar A1 - Kupsch, Andreas A1 - Müller, Bernd R. T1 - X-Ray-Refraction-Imaging-Techniques high-resolution microstructural characterization N2 - X-ray refraction is analogous to visible light deflection by matter; it occurs at boundaries between different media. The main difference between visible light and X-rays is that in the latter case deflection angles are very small, from a few seconds to a few minutes of arc (i.e., the refraction index n is near to 1). Trivially but importantly, deflection of X-rays is also sensitive to the orientation of the object boundaries. These features make X-ray refraction techniques extremely suitable to a) detect defects such as pores and microcracks and quantify their densities in bulk (not too heavy) materials, and b) evaluate porosity and particle properties such as orientation, size, and spatial distribution (by mapping). While X-ray refraction techniques cannot in general image single defects, their detectability is simply limited by the wavelength of the radiation. We thereby show the application of X-ray refraction 2D mapping (topography) and tomography to different sorts of problems in materials science and technology: 1) Sintering of SiC green bodies; 2) Porosity analysis in additively manufactured alloys; 3) Fiber de-bonding in metal and polymer matrix composites. Such techniques, especially at the Synchrotron BESSY II, Berlin, Germany, can be used in-situ, i.e. when the specimen is subjected to temperatures or external loads. Applications of in-situ X-ray refraction radiography on aluminum alloys and composites are also shown. The use of X-ray refraction analysis yields quantitative information, which can be directly input in kinetics, mechanical and damage models. T2 - ICT 2023 CY - Fürth, Germany DA - 27.02.2023 KW - X-ray refraction KW - Composites KW - In-situ KW - Additive Manufacturing KW - Sintering KW - Ceramics PY - 2023 AN - OPUS4-57200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano, Itziar A1 - Müller, Bernd A1 - Kupsch, Andreas A1 - Bruno, Giovanni A1 - Laquai, Rene' T1 - X-ray refractio techniques non-destructively quantify and classify defects in am materials N2 - X-ray refraction is analogous to visible light deflection by matter; it occurs at boundaries between different media. The main difference between visible light and X-rays is that in the latter case deflection angles are very small, from a few seconds to a few minutes of arc (i.e., the refraction index n is near to 1). Importantly, deflection of X-rays is also sensitive to the orientation of the object boundaries. These features make X-ray refraction techniques extremely suitable to a) detect defects such as pores and microcracks and quantify their densities in bulk (not too heavy) materials, and b) evaluate porosity and particle properties such as orientation, size, and spatial distribution (by mapping). While X-ray refraction techniques cannot in general image single defects, they can detect objects with size above a few wavelengths of the radiation. Such techniques, especially at the Synchrotron BESSY II, Berlin, Germany, can be used in-situ, i.e. when the specimen is subjected to temperatures or external loads. The use of X-ray refraction analysis yields quantitative information, which can be directly input in kinetics, mechanical and damage models. We hereby show the application of non-destructive X-ray refraction radiography (SXRR, 2D mapping also called topography) to problems in additive manufacturing: 1) Porosity analysis in PBF-LM-Ti64. Through the use of SXRR, we could not only map the (very sparse) porosity distribution between the layers and quantify it, but also classify, and thereby separate, the filled porosity (unmolten powder) from the keyhole and gas pores (Figure 1). 2) In-situ heat treatment of laser powder bed fusion PBF-LM-AlSi10Mg to monitor microstructure and porosity evolution as a function of temperature (Figure 2). By means of SXRR we indirectly observed the initial eutectic Si network break down into larger particles as a function of increasing temperature. We also could detect the thermally induced porosity (TIP). Such changes in the Si-phase morphology upon heating is currently only possible using scanning electron microscopy, but with a much smaller field-of-view. SXRR also allows observing the growth of some individual pores, usually studied via X-ray computed tomography, but again on much smaller fields-of-view. Our results show the great potential of in-situ SXRR as a tool to gain in-depth knowledge of the defect distribution and the susceptibility of any material to thermally induced damage and/or microstructure evolution over statistically relevant volumes. T2 - AAMS 2023 CY - Madrid, Spain DA - 27.09.2023 KW - X-ray Refaction radiography KW - Defects KW - Large Scale Facilities KW - Computed tomography PY - 2023 AN - OPUS4-58508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Piault, Pierre A1 - King, Andrew A1 - Henry, Laura A1 - Bruno, Giovanni T1 - Understanding the hot isostatic pressing efectiveness of laser powder bed fusion Ti‑6Al‑4V by in‑situ X‑ray imaging and difraction experiments JF - Scientific reports N2 - In the present study, in-situ observation of Hot Isostatic Pressure (HIP) procedure of laser powder bed fusion manufactured Ti-6Al-4V parts was performed to quantitatively estimate the densifcation rate of the material and the infuence of the defect initial size and shape on such rate. The observations were performed in-situ using the Ultrafast Tomography Paris-Edinburgh Cell and the combination of fast phase-contrast synchrotron X-ray tomography and energy dispersive difraction. With this strategy, we could quantify how the efectiveness of HIP depends on the characteristics of a defect. Smaller defects showed a higher densifcation rate, while the defect shape did not have signifcant efect on such rate. KW - Additive manufacturing KW - Laser powder bed fusion KW - X-ray computed tomography KW - Hot isostatic pressing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587702 DO - https://doi.org/10.1038/s41598-023-45258-1 SN - 2045-2322 VL - 13 IS - 1 SP - 1 EP - 11 AN - OPUS4-58770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D. A1 - Paveleva, A. A1 - Kozadayeva, M. A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Surmenev, R. A1 - Koptyug, A. A1 - Surmeneva, M. T1 - Trapped powder removal from sheet-based porous structures based on triply periodic minimal surfaces fabricated by electron beam powder bed fusion JF - Materials Science & Engineering A N2 - Electron Beam Powder Bed Fusion-manufactured (E-PBF) porous components with narrow pores or channels and rough walls or struts can be filled with trapped powder after the manufacturing process. Adequate powder removal procedures are required, especially for high-density porous structures. In the present research, sheetbased porous structures with different thicknesses based on triply periodic minimal surfaces fabricated by EPBF were subjected to different post-processing methods, including a traditional powder recovery system for EPBF, chemical etching and ultrasound vibration-assisted powder removal. Wall thickness, internal defects, microstructure and morphology features, powder distribution inside the specimens, mechanical properties and deformation modes were investigated. A powder recovery system could not remove all residual powder from dense structures. In turn, chemical etching was effective for surface morphology changes and subsurface layers elimination but not for powder removal, as it affected the wall thickness, considerably influencing the mechanical properties of the whole structure. The ultrasound vibration method was quite effective for the removal of residual powder from sheet-based TMPS structures and without a severe degradation of mechanical properties. 10.1016/j.msea.2022.144479 Ultrasound vibration also caused grain refinement. KW - Additive manufacturing KW - Residual powder removal KW - Ti6Al4V alloy KW - Electron beam powder bed fusion KW - TPMS structures PY - 2023 DO - https://doi.org/10.1016/j.msea.2022.144479 VL - 862 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-56564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - De la Hoz Alford, L. A1 - Pecanha de Souza, C. G. A1 - Paciornik, S. A1 - d` Almeida, J. R. M. A1 - Santos Leite, B. A1 - Avila, H. C. A1 - Léonard, F. A1 - Bruno, Giovanni T1 - Three-Dimensional Characterization of Polyurethane Foams Based on Biopolyols JF - Three-Dimensional Characterization of Polyurethane Foams Based on Biopolyols N2 - Two biopolyol-based foams derived from banana leaves (BL) or stems (BS) were produced, and their compression mechanical behavior and 3D microstructure were characterized. Traditional compression and in situ tests were performed during 3D image acquisition using X-ray microtomography. A methodology of image acquisition, processing, and analysis was developed to discriminate the foam cells and measure their numbers, volumes, and shapes along with the compression steps. The two foams had similar compression behaviors, but the average cell volume was five times larger for the BS foam than the BL foam. It was also shown that the number of cells increased with increasing compression while the average cell volume decreased. Cell shapes were elongated and did not change with compression. A possible explanation for these characteristics was proposed based on the possibility of cell collapse. The developed methodology will facilitate a broader study of biopolyol-based foams intending to verify the possibility of using these foams as green alternatives to the typical petrol-based foams. KW - Compression mechanical KW - Biopolyol KW - Banana KW - 3D microstructure KW - X-ray microtomography PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571982 DO - https://doi.org/10.3390/ma16052118 SN - 1996-1944 VL - 16 IS - 5 SP - 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-57198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mouiya, M. A1 - Martynyuk, M. A1 - Kupsch, Andreas A1 - Laquai, R. A1 - Müller, Bernd R. A1 - Doyen, N.T. A1 - Tamraoui, Y. A1 - Serrano Munoz, Itziar A1 - Huger, M. A1 - Kachanov, M. A1 - Bruno, Giovanni T1 - The stress–strain behavior of refractory microcracked aluminum titanate: The effect of zigzag microcracks and its modeling JF - Journal of the American Ceramic Society N2 - The stress–strain behavior of ceramics, such as aluminum titanate, has certain features that are unusual for brittle materials—in particular, a substantial nonlinearity under uniaxial tension, and load–unload hysteresis caused by the sharp increase of the incremental stiffness at the beginning of unloading. These features are observed experimentally and are attributed to microcracking. Here we compare different degrees of stress–strain nonlinearity of aluminum titanate materials and quantitatively model them. We use advanced mechanical testing to observe the mechanical response at room and high temperature; electron microscopy, and X-ray refraction radiography to observe the microstructural changes. Experiments show that two types of microcracks can be distinguished: (i) microcracks induced by cooling from the sintering temperature (due to heterogeneity and anisotropy of thermal expansion), with typical sizes of the order of grain size, and (ii) much larger microcracks generated by the mechanical loading. The two microcrack types produce different effects on the stress–strain curves. Such microcracks and the features of the stress–strain behavior depend on the density of the cooling-induced microcracks and on the distribution of grain sizes. They are modeled analytically and numerically. KW - Hystersis KW - Nonlinear stress-strain curve KW - Refractory KW - Stiffness KW - X-ray refraction PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580517 DO - https://doi.org/10.1111/jace.19325 SN - 1551-2916 VL - 106 SP - 6995 EP - 7008 PB - Wiley-Blackwell CY - Oxford [u.a.] AN - OPUS4-58051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Luzin, V. A1 - Abreu Faria, G. A1 - Degener, Sebastian A1 - Polatidis, E. A1 - Čapek, J. A1 - Kromm, Arne A1 - Dovzhenko, G. A1 - Bruno, Giovanni T1 - Texture-based residual stress analysis of laser powder bed fused Inconel 718 parts JF - Journal of Applied Crystallography N2 - Although layer-based additive manufacturing methods such as laser powder bed fusion (PBF-LB) offer an immense geometrical freedom in design, they are typically subject to a build-up of internal stress (i.e. thermal stress) during manufacturing. As a consequence, significant residual stress (RS) is retained in the final part as a footprint of these internal stresses. Furthermore, localized melting and solidification inherently induce columnar-type grain growth accompanied by crystallographic texture. Although diffraction-based methods are commonly used to determine the RS distribution in PBF-LB parts, such features pose metrological challenges in their application. In theory, preferred grain orientation invalidates the hypothesis of isotropic material behavior underlying the common methods to determine RS. In this work, more refined methods are employed to determine RS in PBF-LB/M/IN718 prisms, based on crystallographic texture data. In fact, the employment of direction-dependent elastic constants (i.e. stress factors) for the calculation of RS results in insignificant differences from conventional approaches based on the hypothesis of isotropic mechanical properties. It can be concluded that this result is directly linked to the fact that the {311} lattice planes typically used for RS analysis in nickel-based alloys have high multiplicity and less strong texture intensities compared with other lattice planes. It is also found that the length of the laser scan vectors determines the surface RS distribution in prisms prior to their removal from the baseplate. On removal from the baseplate the surface RS considerably relaxes and/or redistributes; a combination of the geometry and the scanning strategy dictates the sub-surface RS distribution. KW - Additive manufacturing KW - Electron backscattered diffraction KW - Principal stress KW - Residual stress PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578331 DO - https://doi.org/10.1107/S1600576723004855 SN - 1600-5767 VL - 56 IS - Pt 4 SP - 1076 EP - 1090 AN - OPUS4-57833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tsamos, Athanasios A1 - Evsevleev, Sergei A1 - Fioresi, R. A1 - Faglioni, F. A1 - Bruno, Giovanni T1 - Synthetic Data Generation for Automatic Segmentation of X-ray Computed Tomography Reconstructions of Complex Microstructures JF - Journal of Imaging N2 - The greatest challenge when using deep convolutional neural networks (DCNNs) for automatic segmentation of microstructural X-ray computed tomography (XCT) data is the acquisition of sufficient and relevant data to train the working network. Traditionally, these have been attained by manually annotating a few slices for 2D DCNNs. However, complex multiphase microstructures would presumably be better segmented with 3D networks. However, manual segmentation labeling for 3D problems is prohibitive. In this work, we introduce a method for generating synthetic XCT data for a challenging six-phase Al–Si alloy composite reinforced with ceramic fibers and particles. Moreover, we propose certain data augmentations (brightness, contrast, noise, and blur), a special in-house designed deep convolutional neural network (Triple UNet), and a multi-view forwarding strategy to promote generalized learning from synthetic data and therefore achieve successful segmentations. We obtain an overall Dice score of 0.77. Lastly, we prove the detrimental effects of artifacts in the XCT data on achieving accurate segmentations when synthetic data are employed for training the DCNNs. The methods presented in this work are applicable to other materials and imaging techniques as well. Successful segmentation coupled with neural networks trained with synthetic data will accelerate scientific output. KW - Automatic segmentation KW - 3D deep convolutional neural network (3D DCNN) KW - Dice score KW - Metal matrix composite (MMC) KW - Modified U-Net architectures KW - Multi-phase materials PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571243 DO - https://doi.org/10.3390/jimaging9020022 VL - 9 IS - 2 SP - 1 EP - 23 PB - MDPI AN - OPUS4-57124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Strategies to use neutrons as an industrial problem-solving tool N2 - For how trivial or provocative it can sound, the best neutron spectrometer in the world does not produce science and technology by itself. By definition of “Materials Science”, neutron scattering data on engineering materials must be used as a tool to understand, and even tailor, materials performance. In order for this to happen, neutron data need to be 1. Acquired under the most relevant condition possible 2. Coupled to other experimental techniques 3. Capitalized by means of proper simulations and data analysis Point 1- calls for an intense use and the development of top-notch of in-situ techniques; Point 2- means that the sole use of neutron data will not lead to any solution of a global problem; All points above hint to the fact that access to neutron sources is not routine, and therefore it is imperative to search ways to make neutron data rentable and sustainable for the material science and industrial research community. In this presentation, and based on two examples, we will show a couple of strategies to combine neutron data with other experiments, and with theoretical models to raise the validity of experiments to the level of problem-solving. As one might imagine, these are only a few among the almost infinite combinations possible to help improving material properties, performance, and safety, i.e., ripe for everyday use. T2 - MORIS Workshop CY - Garching, Germany DA - 26.04.2023 KW - Neutron Diffraction KW - Residual Stress KW - Large Scale Facilities KW - X-ray Computed Tomography PY - 2023 AN - OPUS4-57361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rieder, Philipp A1 - Petrich, Lukas A1 - Serrano Munoz, Itziar A1 - Fernández, Ricardo A1 - Bruno, Giovanni A1 - Schmidt, Volker T1 - Statistical Comparison of Substructures in Pure Aluminum Before and After Creep Deformation, Based on EBSD Image Data JF - Microscopy and Microanalysis N2 - Electron backscatter diffraction (EBSD) images of extruded pure aluminum were statistically analyzed to investigate creep-induced subgrain structures after applying two different levels of creep stress, corresponding to the power law (PL) and power-law breakdown (PLB) regimes. Kernel average misorientation analysis of EBSD measurements revealed 2D morphologies, which were subdivided by a multi-step segmentation procedure into subgranular arrangements. Various descriptors were employed to characterize the “subgrains” quantitatively, including their size, shape, spatial arrangement, and crystallographic orientation. In particular, the analysis of the orientations of subgrains was conducted by neglecting rotations around the loading axis. This approach facilitated the individual investigation of the {001} and {111} subgrain families with respect to the loading axis for two investigated stress levels plus a reference specimen. For the PL regime, the statistical analysis of subgrain descriptors computed from segmented image data revealed a similar degree of strain accumulation for {111} and {001} subgrains. In contrast, for the PLB regime, the analyzed descriptors indicate that {111} subgrains tend to accumulate significantly more strain than {001} ones. These observations suggest that the mechanisms leading to PLB may be associated with strain localization dependent on intergranular stress, hindering the recovery process within {111} grains. KW - Crystallographic descriptor KW - Dislocation-climb-controlled creep KW - Electron backscatter diffraction (EBSD) KW - Geometric descriptor KW - Ernel average misorientation (KAM) KW - pure aluminum KW - Qquantification and segmentation KW - Statistical image analysis KW - subgrain PY - 2023 DO - https://doi.org/10.1093/micmic/ozad121 SN - 1431-9276 SP - 1 EP - 12 PB - Oxford University Press AN - OPUS4-58730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -