TY - CONF A1 - Giese, Marcel T1 - Experimentelle Charakterisierung der WIG-Schweißeignung einer Hoch- und Mediumentropie-Legierung N2 - Equiatomic multi-element systems with defined entropy are a relatively new mate-rial concept for alloy production. These alloys consist of at least five elements in equiatomic distribution in the case of high entropy alloys (HEA) and three to four elements in equiatomic distribution in the case of medium entropy alloys (MEA). Previous studies on these alloys have focused primarily on their production, micro-structure and the resulting material properties. Meanwhile, the focus here is on the processing of the alloys and their influence on future applications. Up to now, there has been insufficient knowledge of the materials and processes involved in weld-ing. In this work, therefore, the weldability of a CoCrFeMnNi-HEA and a CoCrNi-MEA by means of a TIG welding process was investigated as a basic system. To this end, the welding parameters were first determined on a reference alloy (Ni-based: 2.4858) and transferred to the welding of the CoCrFeMnNi-HEA and CoCrNi-MEA. Weldability was assessed by testing the absence of defects and microstructures obtained. The weld metal exhibited the dendritic microstructure typical of TIG, with microsegregations forming as interdendritic phases. Increased hardness was de-tected in the weld metal compared to the base metal. In the heat-affected zone, there was little grain growth and, in both alloys, the formation of hot cracks after welding. The cause of the cracks was to be found in the specimen preparation, which had an influence on the subsequent processing. After elimination of this in-fluence, no welding process-related imperfections were found in the CoCrFeMnNi-HEA and CoCrNi-MEA. In summary, both materials show good fusion weldability by TIG welding. The re-sults of this work thus contribute to the understanding of the weldability of HEA and in particular for CoCrNi-MEA, which was considered in this depth for the first time. T2 - Verteidigung Masterarbeit Otto von Guericke Universität Magdeburg CY - Magdeburg, Germany DA - 20.10.2021 KW - Hochentropielegierung KW - Mediumentropielegierung KW - WIG-Schweißen PY - 2021 AN - OPUS4-53643 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Giese, Marcel T1 - Effect of Ultrasonic-Assisted Machining for Surface Functionalization of Innovative Work-Hardening Multi-Principal-Element Alloys N2 - Multi-principal-element alloys (MPEAs) are an alloying concept consisting of at least two main alloying elements resulting in unique microstructures and potentially superior physical, mechanical and chemical properties, for instance a high work hardening capacity. These characteristics are determined by four core effects: sluggish diffusion, severe lattice distortion, high-entropy and cocktail effect. The development of MPEAs is a promising approach to extend the range of applications of conventional alloys by exploiting these core effects. In the present study, as reference to the conventional high-manganese steel X120Mn12 (ASTM A128), characterized by particularly high work hardening capacity generating exceptional mechanical properties, work-hardening MPEAs based on the equimolar composition CoFeNi in combination with Mn and C were developed. Specimens were produced as bulk material by melting via an electric arc furnace. In a second step the specimens undergo a surface finishing via milling process. Therefore, a hybrid milling process was used which, in addition to producing defined surfaces, also has the potential to reduce tool wear and increase surface integrity by introducing compressive stresses and increasing hardness through pronounced work hardening in comparison to conventional machining. The so-called ultrasonic-assisted milling (USAM) is characterized by an axial oscillation of the tool during the milling process. The machining parameters were varied to analyze the effect on work hardening together with process forces during milling and resulting surface integrity. Subsequently, microstructure evolution, hardness as well as resulting wear resisting capacity were investigated and correlated with the composition and the USAM parameters. For the MPEA CoFeNi-Mn12C1.2 a pronounced lattice strain and grain refinement due to the plastic deformation during the USAM was recorded, especially at high USAM amplitude and lower cutting speed due to the greater number of tool oscillations per cutting engagement. Consequently, a hardness increase of up to 380 HV0.025 was induced for the aforementioned MPEA exhibiting a higher wear resistance compared to the X120Mn12. This shows the promising approach for the development of work-hardening materials based on new alloy concepts such as MPEAs allowing also coatings required for applications in tribological systems. As conventional hard and wear-resistant coatings are challenging in machining due to massive tool wear this approach of functional coating materials with high hardening capacity during USAM have the potential to reduce tool wear and ensure a adequate surface integrity and wear resistance. T2 - 50th International Conference on Metallurgical Coatings and Thin Films (ICMCTF 2024) CY - San Diego, CA, USA DA - 19.05.2024 KW - Ultrasonic assisted milling KW - Surface integrity KW - High entropy alloys PY - 2024 AN - OPUS4-61928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Giese, Marcel T1 - Alloy Modification and ultrasonic assisted milling of wear resistant alloys with defined surfaces N2 - The targets for reducing CO2 emissions are closely linked to the development of highly efficient and economical steel components in plant, process and power plant technology, which require wear protection coatings tailored to the application and steel material for high combined corrosive, tribological, thermal and mechanical stresses. There is a growing demand in industry for defined functional surfaces of high quality for these coatings. Milling is a standard process for finish machining. The desired properties of wear resistant alloys imply significant challenges for the milling process due to high tool wear and surface defects. Besides the hardness of the coating materials, especially due to the precipitations, inhomogeneous, anisotropic weld structures of the claddings lead to further deteriorations of milling processes due to unstable milling conditions and process forces. A joint project of BAM and ISAF of TU Clausthal (Fosta P1550/IGF 21959 N) investigates the optimization of these challenging machining conditions by means of alloy modifications of the welding powder for plasma transferred arc cladding, without reducing the wear protection potential and using ultrasonic assisted milling process. In this paper, the influence of the microstructure and precipitation morphology adjusted by means of alloy modification on machining for a NiCrMoSiFeB alloy (trade name: Colmonoy 56 PTA) is investigated. Through metallurgical investigations and in-situ measurement of cutting forces and temperatures at the cutting edge during the milling process as well as the subsequent investigation of tool wear and surface integrity, a detailed analysis and correlation between microstructural properties and machinability is feasible. The findings allow recommendations for standards and processing guidelines, enabling safe and economical production of highly stressed steel components with non-critical, cost-reduced materials. T2 - IIW Annual Assembly CY - Singapore DA - 16.07.2023 KW - Werkzeugverschleiß KW - Oberflächenintegrität KW - Ultraschallunterstütztes Fräsen KW - Zerspankräfte PY - 2023 AN - OPUS4-59087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Giese, Marcel T1 - Alloy Modification and ultrasonic assisted milling of wear resistant alloys with defined surfaces N2 - The targets for reducing CO2 emissions are closely linked to the development of highly efficient and economical steel components in plant, process and power plant technology, which require wear protection coatings tailored to the application and steel material for high combined corrosive, tribological, thermal and mechanical stresses. In addition to increasing demands to replace conventional cobalt alloys with nickel alloys as a result of price and supply risks, there is a growing demand in industry for defined functional surfaces of high quality for these coatings. Milling is a standard process for finish machining. The desired properties of wear resistant alloys imply significant challenges for the milling process due to high tool wear and surface defects. Besides the hardness of the coating materials, especially due to the precipitations, inhomogeneous, anisotropic weld structures of the claddings lead to further deteriorations of milling processes due to unstable milling conditions and process forces. A joint project of BAM and ISAF of TU Clausthal (Fosta P1550/IGF 21959 N) investigates the optimization of these challenging machining conditions by means of alloy modifications of the welding powder for plasma transferred arc cladding, without reducing the wear protection potential and using ultrasonic assisted milling process. In this paper, the influence of the microstructure and precipitation morphology adjusted by means of alloy modification on machining is investigated. The alloy used is a NiCrMoSiFeB alloy (trade name: Colmonoy 56 PTA). Through metallurgical investigations and in-situ measurement of cutting forces and temperatures at the cutting edge during the milling process as well as the subsequent investigation of tool wear and surface integrity, a detailed analysis and correlation between microstructural properties and machinability is feasible. The findings allow recommendations for standards and processing guidelines, enabling safe and economical production of highly stressed steel components with non-critical, cost-reduced materials. T2 - Bachelor-, Master-, Doktoranden-Kolloquium CY - Magdeburg, Germany DA - 31.05.2023 KW - Werkzeugverschleiß KW - Oberflächenintegrität KW - Ultraschallunterstütztes Fräsen KW - Zerspankräfte PY - 2023 AN - OPUS4-59212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Giese, Marcel T1 - Alloy modification and ultrasonic assisted milling of wear resistant alloys with defined surfaces N2 - The targets for reducing CO2 emissions are closely linked to the development of highly efficient and economical steel components in plant, process and power plant technology, which require wear protection coatings tailored to the application and steel material for high combined corrosive, tribological, thermal and mechanical stresses. In addition to increasing demands to replace conventional cobalt alloys with nickel alloys as a result of price and supply risks, there is a growing demand in industry for defined functional surfaces of high quality for these coatings. Milling is a standard process for finish machining. The desired properties of wear resistant alloys imply significant challenges for the milling process due to high tool wear and surface defects. Besides the hardness of the coating materials, especially due to the precipitations, inhomogeneous, anisotropic weld structures of the claddings lead to further deteriorations of milling processes due to unstable milling conditions and process forces. A joint project of BAM and ISAF of TU Clausthal (Fosta P1550/IGF 21959 N) investigates the optimization of these challenging machining conditions by means of alloy modifications of the welding powder for plasma transferred arc cladding, without reducing the wear protection potential and using ultrasonic assisted milling process. In this paper, the influence of the microstructure and precipitation morphology adjusted by means of alloy modification on machining is investigated. The alloy used is a NiCrMoSiFeB alloy (trade name: Colmonoy 56 PTA). Through metallurgical investigations and in-situ measurement of cutting forces and temperatures at the cutting edge during the milling process as well as the subsequent investigation of tool wear and surface integrity, a detailed analysis and correlation between microstructural properties and machinability is feasible. The findings allow recommendations for standards and processing guidelines, enabling safe and economical production of highly stressed steel components with non-critical, cost-reduced materials. T2 - European steel technology and application days CY - Düsseldorf, Germany DA - 12.06.2023 KW - Ultrasonic assisted milling KW - Surface integrity KW - Tool wear PY - 2023 AN - OPUS4-58945 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Giese, Marcel T1 - Alloy Modification and ultrasonic assisted milling of wear resistant alloys with defined surfaces N2 - The targets for reducing CO2 emissions are closely linked to the development of highly efficient and economical steel components in plant, process and power plant technology, which require wear protection coatings tailored to the application and steel material for high combined corrosive, tribological, thermal and mechanical stresses. There is a growing demand in industry for defined functional surfaces of high quality for these coatings. Milling is a standard process for finish machining. The desired properties of wear resistant alloys imply significant challenges for the milling process due to high tool wear and surface defects. Besides the hardness of the coating materials, especially due to the precipitations, inhomogeneous, anisotropic weld structures of the claddings lead to further deteriorations of milling processes due to unstable milling conditions and process forces. A joint project of BAM and ISAF of TU Clausthal (Fosta P1550/IGF 21959 N) investigates the optimization of these challenging machining conditions by means of alloy modifications of the welding powder for plasma transferred arc cladding, without reducing the wear protection potential and using ultrasonic assisted milling process. In this paper, the influence of the microstructure and precipitation morphology adjusted by means of alloy modification on machining for a NiCrMoSiFeB alloy (trade name: Colmonoy 56 PTA) is investigated. Through metallurgical investigations and in-situ measurement of cutting forces and temperatures at the cutting edge during the milling process as well as the subsequent investigation of tool wear and surface integrity, a detailed analysis and correlation between microstructural properties and machinability is feasible. The findings allow recommendations for standards and processing guidelines, enabling safe and economical production of highly stressed steel components with non-critical, cost-reduced materials. T2 - IIW Intermediate meeting of Commission II-A CY - Garching, Germany DA - 06.03.2023 KW - Werkzeugverschleiß KW - Oberflächenintegrität KW - Ultraschallunterstütztes Fräsen PY - 2023 AN - OPUS4-59086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Giese, Marcel T1 - Investigation of the influence of PWHT heating rate and global stress conditions on the stress relief cracking mechanism of CrMoV steel SAW joints N2 - This presentation summarizes the latest research results of the influence of the post weld heat treatment (PWHT) rate and the global mechanical stress conditions on the stress relief cracking (SRC) susceptibility of low-alloyed and creep-resistant CrMoV steel submerged arc weld joints. It was found that a certain effect of very low heating rates could be confirmed. In addition, the interlinking of SRC susceptibility increasing effects during the PWHT and the ex-post indentification in metallographic cross-section via microstructure characterization is very complex. T2 - IIW Intermediate meeting of Commission II-A CY - Garching, Germany DA - 06.03.2023 KW - Creep-resistant steel KW - Submerged arc welding KW - Stress relief cracking KW - Heating rate KW - Microstructure characterization PY - 2023 AN - OPUS4-57116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Giese, Marcel A1 - Schröder, Nina A1 - Rhode, Michael A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Kadoke, Daniel A1 - Kruse, Julius T1 - Local strain behaviour in cross weld tensile specimens of microalloyed high strength steels using digital image correlation N2 - This study specifically examines the role of the microalloying element titanium (Ti) in achieving the desired mechanical properties of quenched and tempered high-strength fine-grain structural steels, with a nominal yield strength of ≥ 690 MPa. Current specifications limit chemical composition only by defining upper thresholds, but even minor variations in Ti content can substantially alter mechanical properties. Consequently, accurate prediction of weldability and welded joint integrity becomes challenging, as variations in Ti lead to distinct microstructural characteristics, potentially causing undesirable softening or hardening effects in the heat-affected zone (HAZ). To address these complexities, two distinct titanium concentrations were systematically investigated for the first time using specially developed laboratory-cast alloys. Both alloying configurations were based on the standard S690QL grade, with consistent chemical composition and heat treatment parameters maintained across the samples. For the weldability analysis, three-layer welds were executed using gas metal arc welding (GMAW), allowing for the identification of critical microstructural zones within the HAZ that exhibit significant softening or hardening. The influence of the softened HAZ region on failure mechanisms was assessed through transverse tensile tests. Digital image correlation (DIC) was employed to capture local strain variations across different HAZ regions in situ. With a custom-developed mirror system, local strains in microstructural zones on both the top and bottom surfaces of the weld were recorded simultaneously. This setup enabled a detailed analysis of how weld seam geometry (e.g., V-groove configuration) influences strain gradients. Additionally, the investigation of localized deformation provided insights into how variations in Ti content within the HAZ affect global strain, fracture constriction, fracture location, and overall fracture behavior. T2 - MPA Seminar 2024 Materials Processes Applications CY - Stuttgart, Germany DA - 08.10.2024 KW - HAZ-Softening KW - Digital Image Correlation KW - Cross weld tensile test PY - 2024 AN - OPUS4-61488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Giese, Marcel T1 - Charakterisierung der WIG und FSW-Mischverbindungen neuartiger Multielement-Legierungen mit einem austenitischen Stahl N2 - Multielement-Legierungen (MPEA - Multiple Principal Element Alloys, gemeinhin auch als Hochentropielegierungen bezeichnet) stellen eine neue Klasse von Werkstoffen dar, die aus mindestens drei Legierungselementen mit jeweils 5 bis 35 Atom-% bestehen. Somit unterscheidet sich diese Legierungskonzept fundamental von konventionellen Werkstoffen wie Stahl oder Nickellegierungen. Hierzu werden die Legierungselemente gezielt ausgewählt und die Mikrostrukturen ein- und zum Teil auch mehrphasig eingestellt. Das Ziel ist dabei, hochinnovative MPEA mit individuell einstellbaren Eigenschaften für die industrielle Anwendung zu identifizieren. Dabei werden insbesondere Zielkonflikte, wie bspw. der Trade-off zwischen Festigkeit und Duktilität bei konventionellen Stählen, überwunden. Insbesondere die hohe mechanische Festigkeit bei höchster Korrosionsbeständigkeit sind bei bestimmten Legierungssystemen von hohem Interesse. Hier kann u.a. die Substitution klassischer hochlegierter Stähle oder von Ni-Basislegierungen perspektivisch erfolgen. In den letzten 20 Jahren lag der Fokus jedoch auf der reinen Materialsynthese. Mit der Zunahme verfügbarer Werkstoffquantitäten, stehen Verarbeitungsfragen, wie werkstoff- und beanspruchungsgerechte Füge- bzw. Schweißverfahren jetzt im Mittelpunkt. Der Schweißeignung von MPEA wurde bis Ende 2022 nur äußert wenig Aufmerksamkeit zuteil. Erfahrungen zu Mischverbindungen (sogenannte DMWs - Dissimilar Metal Welds) fehlen dabei vollständig, sind jedoch essenziell für die Anwendung dieser Werkstoffe in Verbindung mit konventionellen Werkstoffen. Die vorliegende Studie präsentiert erstmals im deutschen Sprachraum, die umfassenden experimentellen Ergebnisse zur Schweißeignung von MPEA-Mischverbindungen und der resultierenden Mikrostruktur. Dazu wurden zwei äquiatomare MPEAs CoCrFeMnNi (Hochentropie-) und CoCrNi (Mittelentropielegierung) mittels WIG- und Rührreibschweißen mit einem konventionellen, hochlegierten und austenitischen Cr-Ni-Stahl (1.4301) gefügt. Die erstmals untersuchten DMWs resultierten dabei in sehr interessanten Mikrostrukturen, mechanisch-technologische Eigenschaften wurden durch instrumentierte Zugversuche gewonnen, die gleichzeitig der Ermittlung der lokalen Verformung im Schweißnahtbereich dienten (durch Verwendung der berührungslosen DIC-Digital Image Correlation-Technik). Dabei zeigt sich für beide Schweißverfahren eine Erweichung in der WEZ der MPEAs sowie eine geringfügig verminderte Zugfestigkeit. Durch die Experimente konnte der prinzipielle Nachweis der Schweißeignung der MPEAs für DMWs mit konventionellen Werkstoffen erbracht werden, die auch eine dementsprechende mechanische Beanspruchbarkeit ermöglichen. Dies ermöglicht zielgerichtete weitere Betrachtungen dieser höchst innovativen Werkstoffe. T2 - DVS Congress 2023 CY - Essen, Germany DA - 11.09.2023 KW - Hochentropiewerkstoff KW - Schweißen KW - Rührreibschweißen KW - Mechanische Eigenschaften KW - Digitale Bildkorrelation (DIC) PY - 2023 AN - OPUS4-58306 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Giese, Marcel T1 - Legierungsmodifikation und Einsatz hybrider Fräsprozesse zur Optimierung der Zerspanungssituation Ni-basierter Verschleißschutzauftragschweißungen mit definierten Oberflächen N2 - Die Ziele zur Verringerung der CO2-Emissionen sind eng verknüpft mit der Entwicklung hocheffizienter und wirtschaftlicher Komponenten aus Stahl in der Anlagen-, Verfahrens- und Kraftwerktechnik, die für hohe kombinierte korrosive, tribologische, thermische und mechanische Beanspruchungen auf Anwendungsfall und Stahlwerkstoff abgestimmte Verschleißschutzschichten erfordern. Neben zunehmenden Forderungen infolge des Preis- und Lieferrisikos konventionelle Kobalt- durch Nickellegierungen zu ersetzen, wächst in der Industrie der Bedarf nach definierten Oberflächen hoher Güte bzw. Funktionsflächen für die Schutzschichten. Eine für Bauteile mit komplexer Geometrie erforderliche Fräsbearbeitung ist insbesondere für KMU aufgrund hohen Werkzeugverschleißes oftmals nicht wirtschaftlich realisierbar, jedoch für viele Einsatzfälle dringend notwendig. In einem Gemeinschaftsvorhaben der BAM und des ISAF der TU Clausthal (Fosta P1550/IGF 21959 N) wird daher untersucht, wie mittels Legierungsmodifikationen der Schweißzusätze für nickelbasierte plasmaauftraggeschweißte Verschleißschutzschichten und durch Einsatz innovativer ultraschallunterstützter Fräsprozesse eine günstigere Zerspanbarkeit erreicht werden kann, ohne das Verschleißschutzpotential zu mindern. Im vorliegenden Beitrag wird der Einfluss der mittels Legierungsmodifikation eingestellten Gefüge- und Ausscheidungsmorphologie auf die Zerspanung untersucht. Dies erfolgt anhand einer typischerweise für Schneckenmaschinen eingesetzte Verschließschutzlegierung zur Substitution entsprechender CoCr-Legierungen (Stellite), einer NiCrMoSiFeB-Legierung (Handelsname: Colmonoy 56 PTA). Durch metallurgische Untersuchungen und In-situ-Messung auftretender Prozesskräfte und Temperaturen an der Werkzeugschneide beim Fräsprozesses sowie der anschließenden Untersuchung von Werkzeugverschleiß und Oberflächenintegrität ist eine detaillierte Analyse und Korrelation zwischen den mikrostrukturellen Eigenschaften und der Zerspanbarkeit möglich. Die Vorgehensweise erlaubt einer Beurteilung des Einflusses der ultraschallunterstützten Fräsbearbeitung auf den Prozess sowie die resultierenden Oberflächenintegrität. Unter systematischer Anwendung dieser Methodik sowie der Berücksichtigung der Anbindung zum Stahlsubstratwerkstoff und der Wirksamkeit des Verschleißschutzes lässt sich letztlich eine gezielte Optimierung der Zerspanungssituation und des Verschleißschutzes erreichen. Die Erkenntnisse erlauben Handlungsanweisungen und Empfehlungen für Normen und Verarbeitungsrichtlinien, die besonders KMU eine sichere und wirtschaftliche Fertigung hochbelasteter Stahlkomponenten mit unkritischen, kostenreduzierten Werkstoffen ermöglichen sollen. T2 - DVS Congress 2023 CY - Essen, Germany DA - 11.09.2023 KW - Werkzeugverschleiß KW - Oberflächenintegrität KW - Ultraschallunterstütztes Fräsen KW - Zerspankräfte PY - 2023 AN - OPUS4-59209 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -