TY - JOUR A1 - Payton, E. A1 - Nolze, Gert T1 - The Backscatter Electron Signal as an Additional Tool for Phase Segmentation in Electron Backscatter Diffraction N2 - The advent of simultaneous energy dispersive X-ray spectroscopy (EDS) data collection has vastly improved the phase separation capabilities for electron backscatter diffraction (EBSD) mapping. A major problem remains, however, in distinguishing between multiple cubic phases in a specimen, especially when the compositions of the phases are similar or their particle sizes are small because the EDS interaction volume is much larger than that of EBSD, and the EDS spectra collected during spatial mapping are generally noisy due to time limitations and the need to minimize sample drift. The backscatter electron (BSE) signal is very sensitive to the local composition due to its atomic number (Z) dependence. BSE imaging is investigated as a complimentary tool to EDS to assist phase segmentation and identification in EBSD through examination of specimens of meteorite, Cu dross, and steel oxidation layers. The results demonstrate that the simultaneous acquisition of EBSD patterns, EDS spectra, and the BSE signal can provide new potential for advancing multiphase material characterization in the scanning electron microscope. KW - Electron backscatter diffraction KW - Energy dispersive x-ray spectroscopy KW - Scanning electron microscopy KW - Multiphase microstructure KW - Phase identification KW - Backscattered electron imaging KW - Meteorite KW - Monte Carlo simulation PY - 2013 U6 - https://doi.org/10.1017/S1431927613000305 VL - 19 IS - 4 SP - 929 EP - 941 AN - OPUS4-37895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Payton, E. J. A1 - Agudo Jácome, Leonardo A1 - Nolze, Gert T1 - Phase Identification by Image Processing of EBSD Patterns N2 - Automated electron backscatter diffraction (EBSD) is generally unable to distinguish between multiple cubic phases in a specimen without additional information, such as that obtained by simultaneous energy dispersive X-ray spectroscopy (EDS). Small particles of phases with relatively similar compositions push the limits of phase identification using simultaneous EBSD and EDS, and a mismatch exists between the spatial resolutions of these two techniques due to them having different electron interaction volumes. In a recent paper, the present authors explored using backscatter detectors mounted on top of the EBSD detector to obtain atomic number (Z) contrast images that could be used for phase segmentation in cases where the results from the EBSD and EDS signals remain ambiguous. In the present work, we show that similar information can be obtained from the raw EBSD patterns themselves at higher spatial resolution than was obtained from the backscatter detectors, with the additional advantage of having no spatial mismatch between the data collection grids. KW - Phase identification KW - Backscattered electrons KW - EBSD KW - SEM PY - 2013 U6 - https://doi.org/10.1017/S143192761300620X VL - 19 IS - Suppl. 2 SP - 842 EP - 843 AN - OPUS4-37985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Payton, E. A1 - Winkelmann, Aimo T1 - Advanced EBSD Pattern Interpretation through Iterative Post-Processing N2 - Since the BSE signal depends on many factors, like the chemistry of the phase and the acceleration voltage, the size and position of the detector array is (slightly) different from phase to phase so that an (iterative) post-processing of the stored patterns is highly recommended. The derived BSE signal can be used for phase assignment in high resolution and high speed maps when EBSD fails and/or EDS (energy dispersive spectroscopy) needs too much time for a suitable and parallel signal acquisition. KW - Electron backscatter diffraction KW - Phase identification KW - Microstructure KW - SEM PY - 2013 U6 - https://doi.org/10.1017/S1431927613005631 VL - 19 IS - Suppl. 2 SP - 728 EP - 729 AN - OPUS4-37986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Payton, E. T1 - Messengers from Space: A Scanning Electron Microscopy Investigation N2 - The macro- and microstructure of iron meteorites provide valuable insights into both the inner structure of our planet and the history of our solar system. High speed collision events in the asteroid belt send the meteorites careening toward Earth. The collisions produce unique deformation microstructures. With cooling rates on the scale of a few degrees per million years, iron meteorites can consist of crystal sizes on the order of meters prior to the collision events. These extremely slow cooling rates result in phase transformations occurring at conditions near thermodynamic equilibrium. Preserving meteorite fragments is important for future studies of phase transformations, material behavior at high strain rates, and the origin of the universe. KW - Meteorite KW - Phase identification KW - Hibbingite KW - Orientation relationship KW - Electron backscatter diffraction KW - Energy dispersive x-ray spectroscopy KW - EDX PY - 2013 IS - 3 SP - 2 EP - 4 PB - GIT Verlag AN - OPUS4-37981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Buchheim, Michaela T1 - Microstructure investigations of iron meteorites by EBSD and EDS analyses N2 - Meteorites are a unique and inspiring material for microstructural studies because if their very specific genesis. Iron meteorites have been formed under unimaginable cooling rates of a few ten Kelvins per million years so that the observable transformation of the formerly huge Fe-Ni single crystals of taenite occurred under nearly-equilibrium conditions. Octahedrites (meteorites having a Ni content between 6...15%) are characterized by ribbons of the low-temperature Fe-Ni phase kamacite separated by rims of residual taenite. This very specific feature is known as Widmanstaetten structure and has been investigated by synchrotron radiation in order to cover a higher volume fraction for a statistically relevant description of orientation relationships. However, plessite – a microstructure mainly consisting of the same phases – reflects the orientation relationship between kamacite and taenite as well. For their characterization, a scanning electron microscope is very suitable in order to investigate crystal orientations or identify phases. Despite the apparently ideal formation circumstances of iron meteorites, Ni concentration profiles prove non-equilibrium conditions. Combined EDS (energy dispersive spectroscopy) and EBSD (electron backscatter diffraction) measurements at a selected plessitic region of the Cape York iron shows that a correlation exists between Ni-concentration and the locally detected orientation relationship. T2 - 15th European Microscopy Congress CY - Manchester, UK DA - 16.09.2012 KW - Phase identification KW - Corrosion KW - Chloride KW - Dermbach PY - 2012 SP - 90 AN - OPUS4-37775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dietrich, D. A1 - Nolze, Gert A1 - Mehner, T. A1 - Nickel, D. A1 - Lampke, T. T1 - EDS/EBSD studies and HR-EBSD pattern analysis on pre-Inca ceramic fragments recovered during San José de Moro Archaeology Program N2 - Pre-Inca civilizations like the coastal cultures Moche and Nazca (Early Intermediate) and the inland culture Wari (Middle Horizon) were agrarian societies which supported indigenous elites of impressive wealth, power, and organization. With the expansion of the Wari Empire, the polychrome style and technique of Nazca propagated to the other cultures. High status burials, most of the Late Moche Fine Line ceramics and a large corpus of ceramics with Wari-derived decoration have been recovered in San José de Moro since 1991. The degree of transfer of procedures in this highly interactive scenario is of special interest: is there a limitation to decoration or is it adopted by the local potters also regarding the formulation of the ceramic bodies? In this context the relative amount, size and type of incorporated non-plastic inclusions as temper are important. T2 - The 16th European Microscopy Congress 2016 CY - Lyon, France DA - 28.08.2016 KW - EBSD KW - EDX KW - Ceramic KW - Phase distribution KW - Microstructure KW - Texture KW - Phase identification KW - SEM PY - 2016 U6 - https://doi.org/10.1002/9783527808465.EMC2016.4462 SP - 4462 PB - John Wiley & Sons AN - OPUS4-37740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -