TY - JOUR A1 - Mücke, Udo A1 - Ullner, Christian A1 - Nolze, Gert T1 - Microstructure, Internal stresses and Fracture Mechanics - Properties of Quartzose Silicate Materials for Whitewares KW - Silicatwerkstoffe PY - 2001 SN - 0173-9913 SN - 0196-6219 VL - 78 IS - 7 SP - E31 EP - E36 PB - Göller CY - Baden-Baden AN - OPUS4-855 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geist, V. A1 - Wagner, G. A1 - Nolze, Gert A1 - Moretzki, O. T1 - Investigations of the meteoritic mineral (Fe,Ni)3P N2 - A survey is presented on some characteristic features of meteoritic (Fe,Ni)3P which is an abundant and important minor phase of most iron meteorites. This mineral (named schreibersite/rhabdite) plays a decisive role during the formation of the so-called Widmanstätten pattern. Different transmission as well as scanning electron microscopic techniques have been applied to get more precise information about the real structure of the phosphide crystals, their chemical composition and the metal distribution across the phoshide/ kamacite interface. X-ray crystal structure determinations have been performed for selected (Fe,Ni)3P - cystals from various iron meteorites (Toluca, North Chile, Watson, Orange River, Morasko, Agpalilik, Odessa, Canyon Diablo). These experiments revealed a metal ordering, i.e. for the three non-equivalent metal positions a different substitution of Fe by Ni has been found. The perfection of the brittle (Fe,Ni)3P samples differs appreciably and seems to be dependent on the thermal history of each individual meteorite. Moreover, inside Ni-rich rhabdite crystals small monocrystalline inclusions of CrN (carlsbergite) have been detected. KW - Iron meteorites KW - Schreibersite KW - Rhabdite KW - Carlsbergite KW - Structure determination KW - Metal ordering KW - EBSD KW - TEM KW - Synchrotron radiation PY - 2005 U6 - https://doi.org/10.1002/crat.200410307 SN - 0023-4753 SN - 1521-4079 SN - 0232-1300 VL - 40 IS - 1/2 SP - 52 EP - 64 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-4431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Wagner, G. A1 - Saliwan Neumann, Romeo A1 - Skála, R. A1 - Geist, V. T1 - Investigation of the orientation relationships of carlsbergite in the North Chile iron meteorite KW - Orientation realtionships KW - CrN KW - (Fe,Ni)3P PY - 2005 SN - 1086-9379 SN - 0026-1114 SP - 14 pages PB - Allen Press CY - Lawrence, Kan. AN - OPUS4-7592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert T1 - The absolute orientation - the influence of image distortions in EBSD KW - Trapezoidal distortion KW - Tilt correction KW - Trace analysis KW - Sample tilt KW - Scan rotation KW - Texture PY - 2005 SN - 1733-3490 PB - Instytut Metalurgii i In·zynierii Materialowej Im. Aleksandra Krupkowskiego CY - Warszawa AN - OPUS4-11158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Winkelmann, Aimo T1 - Dynamical simulation of electron backscatter diffraction (EBSD) patterns of imperfect crystals KW - EBSD KW - Rasterelektronenmikroskopie KW - Kristall KW - Rückstreukoeffizient KW - Beugungsmuster-Simulation KW - Realstruktur PY - 2012 U6 - https://doi.org/10.1017/S1431927612008082 SN - 1431-9276 SN - 1435-8115 VL - 18 IS - Suppl. S2 SP - 1246 EP - 1247 PB - Cambridge University Press CY - New York, NY AN - OPUS4-27920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Buchheim, Michaela T1 - Microstructure investigations of iron meteorites by EBSD and EDS analyses T2 - EMC 2012 - 15th European Microscopy Congress CY - Manchester, UK DA - 2012-09-16 KW - Orientation relationship KW - Weathering KW - Hibbingite PY - 2012 UR - http://www.emc2012.org.uk//documents/Abstracts/Abstracts/EMC2012_0090.pdf SP - 1 EP - 2(?) AN - OPUS4-27922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wendt, U. A1 - Nolze, Gert T1 - Correlation between crystal orientation, channeling contrast and topography during FIB milling of Cu studied by FIB, EBSD, SEM, and AFM KW - TEM-Präparation KW - Abtragsrate PY - 2007 SN - 0032-678X VL - 44 IS - 5 SP - 236 EP - 238 PB - Hanser CY - München AN - OPUS4-14970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Richter, K. A1 - Kraus, Werner A1 - Nolze, Gert A1 - Peplinski, Burkhard ED - Guczi, L. ED - Solymosi, F. ED - Tétényi, P. T1 - X-ray powder diffracton in situ characterisation of the (Cu, Zn, Al)-hydrotalcite phase in Cu-ZnO-Al2O3-catalysts highly active in methanol synthesis T2 - 10th International Congress on Catalysis CY - Budapest, Hungary DA - 1992-07-19 PY - 1993 SN - 0-444-89621-X SN - 0167-2991 N1 - Serientitel: Studies in surface science and catalysis – Series title: Studies in surface science and catalysis IS - 75 SP - 2806 EP - 2808 PB - Elsevier CY - Amsterdam AN - OPUS4-12601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alymov, M. I. A1 - Epishin, Alexander A1 - Nolze, Gert A1 - Link, T. A1 - Bedov, S. A1 - Ankudinov, A. B. T1 - Electron microscopy investigation of the structure of a compact extruded from nanopowder of nickel KW - EBSD KW - SAED KW - TEM KW - SEM KW - Extrusion KW - Nano-technology PY - 2007 SN - 1816-5230 VL - 2 IS - 3-4 SP - 124 EP - 129 PB - Akademperiodyka CY - Kyïv AN - OPUS4-14845 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, Alexander A1 - Link, T. A1 - Nolze, Gert T1 - SEM investigation of interfacial dislocations in nickel-base superalloys N2 - A new technique for investigation of interfacial dislocations in nickel-base superalloys by scanning electron microscopy is presented. At high temperatures the pressure of interfacial dislocations against the γ/γ'-interface causes grooves. This 'fingerprint of the dislocation network' is visualized by deep selective etching, which removes the γ'-phase down to the γ/γ'-interface. Compared with transmission electron microscopy, the proposed method has important advantages: observation of large sample areas, no superposition of dislocations lying in different specimen depths, possibility of three-dimensional view of dislocation configurations, information about the dislocation mobility, reduced time for preparation and visualization. The method can be applied for multiphase materials where the interface is grooved by interfacial dislocations. KW - Dislocation structure KW - Interfaces KW - Nickel alloys KW - Scanning electron microscopy PY - 2007 SN - 0022-2720 SN - 1365-2818 VL - 228 IS - 2 SP - 110 EP - 117 PB - Blackwell CY - London AN - OPUS4-16039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - EBSD-Aplikationen in der BAM T2 - Workshop "Rasterelektronenmikroskopieunter variablem Kammerdruck" CY - Berlin, Germany DA - 2002-05-28 PY - 2002 AN - OPUS4-6105 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Wagner, G. A1 - Saliwan Neumann, Romeo A1 - Skála, R. A1 - Geist, V. T1 - Orientation relationships of carlsbergite in schreibersite and kamacite in the north Chile iron meteorite N2 - The crystallographic orientation of carlsbergite (CrN) in the north Chile meteorite (hexahedrite) was investigated using electron backscatter diffraction and transmission electron microscopy. These studies examined the CrN crystals in the rhabdites (idiomorphic schreibersite) and in kamacite. It was found that the CrN crystals embedded in rhabdite show a number of different orientation relationships with the host crystals. These orientations can be explained based on the lattice dimensions of both coexisting crystalline materials. It was also found that both carlsbergite and kamacite are characterized by a high dislocation density (109 cm–2) while rhabdite is free of dislocations. It is supposed that in spite of the deformed metallic matrix, a general connection between the orientation relation of all the phases involved exists. KW - EBSD KW - Phosphides KW - Carlsbergite KW - Orientation relationship KW - Iron meteorites PY - 2006 U6 - https://doi.org/10.1180/0026461067040342 SN - 0026-461x SN - 1471-8022 VL - 70 IS - 4 SP - 373 EP - 382 PB - Mineralogical Society of Great Britain and Ireland CY - London AN - OPUS4-14424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Farooq, M. U. A1 - Klement, U. A1 - Nolze, Gert T1 - EBSD and EDX analysis at the cladding - Substrate interface of a laser clad railway wheel N2 - Electron backscatter diffraction and energy-dispersive X-ray spectrometry were used to investigate the intermixed interface produced during laser cladding of a Co-Cr-Mo alloy on a steel substrate. A multi-component system and rapid solidification conditions together lead to a complex microstructure at the interface. The solidification of the cladding starts with the formation of an interface layer, which is about 75µm in thickness and consists of randomly oriented equiaxed grains of Co-Cr-Fe solid solution and martensite. Orientation analysis of the grains in the interface layer revealed that some grains have a special orientation relationship with the former austenite grains in the heat affected zone but the cladding is not formed by epitaxial growth on the substrate. Intermixing of the materials at the interface is providing a strong bond between the substrate and the cladding. For a grain from the interface layer to emerge as columnar grain in the cladding, it was determined that its <001> crystallographic direction is not supposed to deviate more than 25° from the sample normal direction. KW - EBSD KW - Laser cladding KW - Interface KW - Orientation KW - Nishiyama - Wassermann relationship PY - 2006 U6 - https://doi.org/10.3139/146.101413 SN - 1862-5282 VL - 97 IS - 11 SP - 1512 EP - 1518 PB - Hanser CY - München AN - OPUS4-14425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - The Orientation of carlsbergite in iron meteorites T2 - EBSD Users Meeting 2006 CY - Hindsgavl, Denmark DA - 0006-12-04 PY - 2006 SP - 34 EP - 46 PB - Oxford Instruments HKL CY - Hindsgavl AN - OPUS4-14426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert T1 - Image distortions in SEM and their influences on EBSD measurements N2 - The high sample tilt angle commonly necessary for an orientation determination by EBSD (electron back-scatter diffraction) is responsible for some simple geometrically caused, but nevertheless essential, image distortions. First of all, the influence of the tilt correction and also the trapezium distortion which appears at low magnifications will be discussed. In the second part, an additional rhomboidal distortion will be introduced which is independent of the magnification used. This distortion appears if the scanned sample surface is out of plane to the tilted stage. Even a small deviation from the parallelity produces an approximately three times bigger error of the Euler angle φ1 when the sample alignment is based on the image captured from the highly tilted sample. This effect especially concerns small samples (e.g. FIB-lamellae) since they cannot be exactly aligned, but the measurements of bigger samples can also be influenced. As an example a correction procedure is described in detail, based on a repetition of the measurement after a 180° sample rotation. KW - EBSD KW - Tilted sample KW - Image distortion PY - 2007 SN - 0304-3991 VL - 107 IS - 2-3 SP - 172 EP - 183 PB - Elsevier CY - New York, NY AN - OPUS4-14449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Farooq, M.U. A1 - Klement, U. A1 - Nolze, Gert T1 - The role of alpha- to epsilon-Co phase transformation on strain hardening of a Co-Cr-Mo laser clad N2 - A laser clad Co–Cr–Mo alloy has been analysed by the electron backscatter diffraction (EBSD) technique to examine the microstructural evolution during tensile deformation and to study the role of the evolved microstructure on strain hardening of the clad. The allotropic phase transformation from α- to ε-Co, that did not take place during cooling from the solidification temperature, occurs in the form of a strain-induced transformation during plastic deformation. Combined slip on non-parallel planes in parallel bands of α- and ε-Co prevents the formation of cracks and contributes to the strain hardening of the material. Due to twin formation at intersecting ε-Co bands, {1 1 0 1} planes become almost parallel to {1 1 1} planes of α-Co, and facilitate further glide of dislocations. Owing to the strain-induced transformation of α- to ε-Co, the laser clad Co–Cr–Mo investigated in this study can accommodate high deformation before cracks are formed at the “wavy slip-lines” and the precipitates. KW - Laser clad KW - EBSD KW - Co-Cr-Mo KW - Phase transformation KW - Strain hardening PY - 2007 SN - 0921-5093 SN - 1873-4936 VL - 445-446 SP - 40 EP - 47 PB - Elsevier CY - Amsterdam AN - OPUS4-14465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wendt, U. A1 - Nolze, Gert T1 - FIB Milling and Canneling KW - Topography KW - Etching rate KW - EBSD KW - AFM PY - 2007 SN - 1439-4243 SN - 1863-7809 VL - 9 IS - 3 SP - 34 EP - 36 PB - GIT-Verl. CY - Darmstadt AN - OPUS4-15749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wendt, U. A1 - Nolze, Gert T1 - FIB-Ätzen und Ionen-Channeling - Der Materialabtrag hängt von der kristallographischen Orientierung ab KW - FIB KW - Ionenätzen KW - Kristall PY - 2007 SN - 0016-3538 VL - 51 IS - 10 SP - 848 EP - 851 PB - GIT-Verlag CY - Darmstadt AN - OPUS4-16155 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - The use of EBSD for the characterization of iron meteorites T2 - Wissenschaftl. Kolloquium Universität Paris XI CY - Paris, France DA - 2005-02-02 PY - 2005 AN - OPUS4-12217 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert A1 - Farooq, U. A1 - KLement, U. T1 - Investigation on laser clads T2 - Wissenschaftl. Kollouqium Universität Göteborg CY - Gothenburg, Sweden DA - 2005-05-22 PY - 2005 AN - OPUS4-12218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - Phase identification by EBSD T2 - SCANDEM, Göteborg CY - Gothenburg, Sweden DA - 2005-05-24 PY - 2005 AN - OPUS4-12219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - Calculation of the diffraction pattern T2 - Wissenschaftliches Kolloquium McGill University CY - Montreal, Canada DA - 2005-06-06 PY - 2005 AN - OPUS4-12220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - PowderCell - a simulation of crystal structures and X-ray powder pattern T2 - Wissenschaftl. Kolloqium McGill University CY - Montreal, Canada DA - 2005-06-06 PY - 2005 AN - OPUS4-12221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - Phase identification by EBSD T2 - Wissenschaftl. Kolloquium McGill University CY - Montreal, Canada DA - 2005-06-07 PY - 2005 AN - OPUS4-12222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - The use of EBSD for the characterization of iron meteorites T2 - Kolloquium zum Berg- und Hüttenmännischen Tag, TU Freiberg CY - Freiberg, Germany DA - 2005-06-17 PY - 2005 AN - OPUS4-12223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - The absolute orientation, or: the influence of image distortions T2 - AK-Treffen von DVM-DGM CY - Düsseldorf, Germany DA - 2005-06-30 PY - 2005 AN - OPUS4-12224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - The absolute orientation or: the influence of image distortions in EBSD T2 - microCEM 2005 CY - Zakopane, Poland DA - 2005-09-30 PY - 2005 AN - OPUS4-12225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - Interphase boundary characterization in duplex steel and iron meteorites T2 - microCEM CY - Zakopane, Poland DA - 2005-09-30 PY - 2005 AN - OPUS4-12226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - Eisenmeteorite und Duplexstähle - Elektronenbeugung an kompakten Proben im REM T2 - Wissenschaftl. Kolloquium, Universität Magdeburg CY - Magdeburg, Germany DA - 2005-12-06 PY - 2005 AN - OPUS4-12227 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - Eisenmeteorite und Duplexstähle - Elektronenbeugung an kompakten Proben im REM T2 - Wissenschaftl. Kolloquium, FH Lausitz CY - Senftenberg, Germany DA - 2005-12-16 PY - 2005 AN - OPUS4-12228 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert T1 - Characterization of the fcc/bcc orientation relationship by EBSD using pole figures and variants N2 - The orientation relationship (OR) between fcc and bcc lattices are described by crystallographic fundamentals using the example of Kurdjumov-Sachs (K-S) and Nishiyama-Wassermann (N-W). Complete pole figures containing all variants will be used to distinguish even between slightly different ORs. EBSD on iron meteorites and duplex steel has been used to analyse a large number of crystal orientations with regard to a high statistical significance and a high probability to capture all variants in a single measurement. It is shown that the use of fixed OR models like K-S, N-W, Bain, Pitsch, or Greninger-Troiano does not satisfacturally reflect the observed experimental pole distributions. It is not convenient to use high-indexed lattice planes and directions to describe the small deviations from the given models. The Euler subspace representation offers a readily comprehensible tool to get an idea about the characteristic of the experimentally detected OR. KW - EBSD KW - Duplex steel KW - Iron meteorite KW - Pole figure KW - Orientation relationship PY - 2004 U6 - https://doi.org/10.1515/ijmr-2004-0142 SN - 0044-3093 VL - 95 IS - 9 (85 Jahre DGM) SP - 744 EP - 755 PB - Hanser CY - München AN - OPUS4-13972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Farooq, M. U. A1 - Klement, U. A1 - Nolze, Gert T1 - Microstructural characterisation of a Co-Cr-Mo laser clad applied on railway wheels N2 - A Co-Cr-Mo laser cladding applied on railway wheels is characterised by a combination of EBSD and EDX. A complete pass of the cladding is investigated to achieve a better understanding of the microstructure evolution during laser cladding. A microstructure with columnar grains extending over the whole thickness of the cladding is observed. The grains have a <001>-fibre texture with the fibre axis parallel to the normal of the substrate surface, and a substructure consisting of cells/dendrites. During the cladding process, two different kinds of precipitates form in the cell walls, which can be identified as M6C and a non-equilibrium phase. Furthermore, stacking faults are observed to occur in the cladding grains and are discussed with respect to the laser cladding process. KW - Laser cladding KW - Co-Cr-Mo KW - EBSD KW - Carbides PY - 2006 U6 - https://doi.org/10.3139/146.101312 SN - 1862-5282 VL - 97 IS - 6 SP - 838 EP - 844 PB - Hanser CY - München AN - OPUS4-13973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert T1 - Geometrically caused image distortion effects and their influence on interpretation of EBSD measurements KW - Absolute orientation KW - Rhomboidal distortion KW - Trapezium distortion KW - Systematic errors PY - 2006 SN - 0267-0836 SN - 1743-2847 VL - 22 IS - 11 SP - 1343 EP - 1351 PB - Institute of Metals CY - London AN - OPUS4-13974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert T1 - Improved determination of fcc/bcc orientation relationships by use of high indexed-pole figures N2 - The use of variants to analyze fcc/bcc orientation relationships is demonstrated by EBSD data. Because of multiply occupied poles in the stereographic projections low indexed pole figures are not always suitable. This is mostly caused by the convolution of all scattered individual orientation data as the single poles cannot resolved in the pole figure. Pole figures of higher indexed lattice planes more reliably reflect the character of the orientation relationship since no overlapping of poles occurs. KW - Orientation relationship KW - K-S KW - N-W KW - Pole figure KW - Phase boundary KW - Interface PY - 2006 U6 - https://doi.org/10.1002/crat.200410533 SN - 0023-4753 SN - 1521-4079 SN - 0232-1300 VL - 41 IS - 1 SP - 72 EP - 77 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-13976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Li, Pengxi A1 - Nolze, Gert T1 - Influence of surface finishing on residual stress depth profiles of a coarse-grained nickel-base superalloy N2 - Residual stress depth profiles of a cast nickel-base superalloy were measured by regarding the deflections occurring in plate-shaped specimens while successively removing layers from the machined or treated surface by electropolishing. The results are in good agreement with previous findings showing (i) the influence of grinding parameters on the width of so-called white layers, which correspond to steep gradients of residual tensile stress, and (ii) a broad zone of compressive residual stress in the case of shot peening. KW - Superalloy KW - Residual stress KW - Grinding KW - Shot peening PY - 1999 SN - 0921-5093 SN - 1873-4936 VL - 262 IS - 1-2 SP - 308 EP - 311 PB - Elsevier CY - Amsterdam AN - OPUS4-13977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Geist, V. A1 - Neumann, R. A1 - Buchheim, Michaela T1 - Investigation of orientation relationships by EBSD and EDS on the example of the Watson iron meteorite N2 - The suitability of the electron back-scatter diffraction technique (supported by EDS) in order to study the complex microstructures of iron meteorites is demonstrated on the example of the Watson meteorite. The orientation relationships between the main phases kamacite, taenite and schreibersite/rhabdite as well as effects of the real structure have been investigated. In kamacite bands highly deformed blocks appear which show a contineous change of orientation. Plessitic regions are surrounded by deformed taenite lamellae. Also these lamellae show the typical M-profile of the Ni concentration in cross section. In the center a martensitic microstructure has been proven. The white plessite is characterized by a high number of individual kamacite grains which however are separated mainly by low-angle boundaries. So an orientation clustering occurs. The determination of orientation relationships was only possible for a single plessite region comparing the intensity distribution in pole figures with simulations. Schreibersite is brittle and shows a high number of microcracks. However, the strong deformation of kamacite does not allow us to decide whether an orientation relationship between the phosphides and the surrounding kamacite exists or not. KW - Iron meteorite KW - Watson iron KW - Widmannstätten figures KW - Orientation relationship KW - EBSD KW - Kamacite KW - Taenite KW - Schreibersite KW - Plessite PY - 2005 U6 - https://doi.org/10.1002/crat.200410434 SN - 0023-4753 SN - 1521-4079 SN - 0232-1300 VL - 40 IS - 8 SP - 791 EP - 804 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-13978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert T1 - Interphase Boundary Characterization in Duplex Steel and Iron Meteorites Using EBSD Technique KW - Orientation relationship KW - Phase boundary KW - Misfit KW - Pole figure KW - Euler space KW - Variant selection PY - 2006 SN - 1733-3490 VL - 50 IS - 1 SP - 15 EP - 20 PB - Instytut Metalurgii i In·zynierii Materialowej Im. Aleksandra Krupkowskiego CY - Warszawa AN - OPUS4-13960 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - EBSD-Untersuchungen am Kieler Meteorit T2 - 4. Deutsches Meteoriten-Kolloquium, Universität Kiel CY - Kiel, Germany DA - 2012-04-27 PY - 2012 AN - OPUS4-25813 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - Gefüge-Untersuchungen am Meteoriten von Erxleben T2 - 3. Deutsches Meteoriten-Kolloquium CY - Erxleben, Germany DA - 2012-04-14 PY - 2012 AN - OPUS4-25814 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - Microstructure description by EBSD using additional sources of information T2 - Besuch der Technischen Universität Dänemarks Kopenhagen (DTU Kopenhagen) CY - Copenhagen, Denmark DA - 2012-06-11 PY - 2012 AN - OPUS4-26477 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert A1 - Payton, Eric A1 - Saliwan Neumann, Romeo A1 - Buchheim, Michaela T1 - Methodenkopplung mit EBSD T2 - DGM/DVM-Treffen: Mikrostrukturcharakterisierung im REM, Universität Hannover CY - Hanover, Germany DA - 2012-06-04 PY - 2012 AN - OPUS4-26478 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - Schnelle Darstellung von Plolfiguren (stereografische und equal area-Projektion) T2 - DGM/DVM-Treffen: Mikrostrukturcharakterisierung im REM, Universität Hannover CY - Hanover, Germany DA - 2012-06-04 PY - 2012 AN - OPUS4-26479 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Fedelich, Bernard A1 - Finn, Monika A1 - Künecke, Georgia A1 - Rehmer, Birgit A1 - Nolze, Gert A1 - Leistner, C. A1 - Petrushin, N. A1 - Svetlov, I. T1 - Investigation of Elastic Properties of the Single-Crystal Nickel-Base Superalloy CMSX-4 in the Temperature Interval between Room Temperature and 1300 °C N2 - The elastic properties of the single-crystal nickel-base superalloy CMSX-4 used as a blade material in gas turbines were investigated by the sonic resonance method in the temperature interval between room temperature and 1300 °C. Elastic constants at such high temperatures are needed to model the mechanical behavior of blade material during manufacturing (hot isostatic pressing) as well as during technical accidents which may happen in service (overheating). High reliability of the results was achieved using specimens of different crystallographic orientations, exciting various vibration modes as well as precise measurement of the material density and thermal Expansion required for modeling the resonance frequencies by finite element method. Combining the results measured in this work and literature data the elastic constants of the gamma and gamma' phases were predicted. This prediction was supported by measurement of the temperature dependence of the gamma'fraction. All data obtained in this work are given in numerical or analytical forms and can be easily used for different scientific and engineering calculations. KW - Nickel-base superalloys KW - Single-crystals KW - Characterization KW - Elastic constants PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-520972 VL - 11 IS - 2 SP - 152 PB - MDPI AN - OPUS4-52097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yukhvid, V. A1 - Gorshkov, V. A1 - Miloserdov, P. A1 - Skachkova, N. A1 - Alymov, M. I. A1 - Nolze, Gert A1 - Epishin, A. T1 - Synthesis of Molybdenum and Niobium Mono- and Binary Silicides by the Method of SHS-Metallurgy N2 - The process of self-propagating high-temperature synthesis of the Mo–Nb–Si silicides from the powder mixtures has been investigated. Based on performed experiments, the composition of powder mixtures as well as technological parameters are proposed which provide the synthesis of monosilicides MoSi₂, NbSi₂, and binary silicides Mo₁-хNbxSi₂ with different ratios of Nb/Mo by adding different contents of MoO₃ and Nb₂O₅. Microstructure and phase compositions of the obtained silicide ingots are characterized by scanning electron microscopy, electron probe microanalysis, X-ray diffraction, and backscatter electron diffraction. KW - Synthesis KW - EBSD KW - XRD PY - 2016 U6 - https://doi.org/10.1002/adem.201600334 SN - 1438-1656 SN - 1527-2648 SP - 1 EP - 6 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-37209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sobol, Oded A1 - Holzlechner, Gerald A1 - Nolze, Gert A1 - Wirth, Thomas A1 - Eliezer, D. A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) imaging of deuterium assisted cracking in a 2205 duplex stainless steel microstructure N2 - In the present work, the influence of deuterium on the microstructure of a duplex stainless steel type EN 1.4462 has been characterized by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) supported by scanning electron microscopy (SEM), focused ion beam (FIB), electron back scattered diffraction(EBSD) and energy dispersive x-ray (EDX) investigations. Characterization has been carried out before and after electrochemical charging with deuterium which has been used as a tracer, due to its similar behavior to hydrogen in the steel microstructure. In a first approach, the distribution of the deuterium occurring at temperatures above 58 °C has been visualized. Further it turned out that sub-surface micro blisters are formed in the ferrite-austenite interface, followed by the formation of needle shaped plates and subsequent cracking at the ferrite surface. In the austenite phase, parallel cracking alongside twins and hexagonal close packed (martensitic) regions has been observed. In both phases and even in the apparent interface, cracking has been associated with high deuterium concentrations, as compared to the surrounding undamaged microstructure. Sub-surface blistering in the ferrite has to be attributed to the accumulation and recombination of deuterium at the ferrite-austenite interface underneath the respective ferrite grains and after fast diffusing through this phase. Generally, the present application of chemometric imaging and structural analyses allows characterization of hydrogen assisted degradation at a sub-micron lateral resolution. KW - ToF-SIMS KW - Hydrogen assisted cracking KW - Hydrogen embrittlement KW - SEM KW - FIB KW - EBSD PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S0921509316310334 U6 - https://doi.org/10.1016/j.msea.2016.08.107 SN - 0921-5093 VL - 676 SP - 271 EP - 277 PB - Elsevier B.V. AN - OPUS4-37298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, Aimo A1 - Nolze, Gert T1 - Chirality determination of quartz crystals using electron backscatter diffraction N2 - We demonstrate the determination of crystal chirality using electron backscatter diffraction (EBSD) in the scanning electron microscope. The chirality of a-quartz as a space-group-dependent property is verified via direct comparison of experimental diffraction features to simulations using the dynamical theory of electron diffraction. KW - Electron backscatter diffraction KW - Kikuchi patterns KW - Chirality KW - Quartz PY - 2015 U6 - https://doi.org/10.1016/j.ultramic.2014.11.013 SN - 0304-3991 VL - 149 SP - 58 EP - 63 PB - Elsevier CY - New York, NY AN - OPUS4-31384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, Aimo A1 - Nolze, Gert T1 - Analysis of Kikuchi band contrast reversal in electron backscatter diffraction patterns of silicon N2 - We analyze the contrast reversal of Kikuchi bands that can be seen in electron backscatter diffraction (EBSD) patterns under specific experimental conditions. The observed effect can be reproduced using dynamical electron diffraction calculations. Two crucial contributions are identified to be at work: First, the incident beam creates a depth distribution of incoherently backscattered electrons which depends on the incidence angle of the beam. Second, the localized inelastic scattering in the outgoing path leads to pronounced anomalous absorption effects for electrons at grazing emission angles, as these electrons have to go through the largest amount of material. We use simple model depth distributions to account for the incident beam effect, and we assume art exit angle dependent effective crystal thickness in the dynamical electron diffraction calculations. Very good agreement is obtained with experimental observations for silicon at 20 key primary beam energy. KW - Electron backscatter diffraction KW - Kikuchi patterns KW - Dynamical electron diffraction simulation PY - 2010 U6 - https://doi.org/10.1016/j.ultramic.2009.11.008 SN - 0304-3991 VL - 110 IS - 3 SP - 190 EP - 194 PB - Elsevier CY - New York, NY AN - OPUS4-24008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - Symmetry and Euler angles N2 - The relationship between Euler angles and symmetry-equivalent descriptions of crystal orientations are explained. T2 - EBSD Meeting CY - London, UK DA - 31.03.2014 KW - Electron backscatter diffraction KW - Crystal orientation KW - Euler angles KW - Crystal symmetry PY - 2014 AN - OPUS4-37894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Payton, E. A1 - Nolze, Gert T1 - The Backscatter Electron Signal as an Additional Tool for Phase Segmentation in Electron Backscatter Diffraction N2 - The advent of simultaneous energy dispersive X-ray spectroscopy (EDS) data collection has vastly improved the phase separation capabilities for electron backscatter diffraction (EBSD) mapping. A major problem remains, however, in distinguishing between multiple cubic phases in a specimen, especially when the compositions of the phases are similar or their particle sizes are small because the EDS interaction volume is much larger than that of EBSD, and the EDS spectra collected during spatial mapping are generally noisy due to time limitations and the need to minimize sample drift. The backscatter electron (BSE) signal is very sensitive to the local composition due to its atomic number (Z) dependence. BSE imaging is investigated as a complimentary tool to EDS to assist phase segmentation and identification in EBSD through examination of specimens of meteorite, Cu dross, and steel oxidation layers. The results demonstrate that the simultaneous acquisition of EBSD patterns, EDS spectra, and the BSE signal can provide new potential for advancing multiphase material characterization in the scanning electron microscope. KW - Electron backscatter diffraction KW - Energy dispersive x-ray spectroscopy KW - Scanning electron microscopy KW - Multiphase microstructure KW - Phase identification KW - Backscattered electron imaging KW - Meteorite KW - Monte Carlo simulation PY - 2013 U6 - https://doi.org/10.1017/S1431927613000305 VL - 19 IS - 4 SP - 929 EP - 941 AN - OPUS4-37895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - Computational Advances N2 - The EBSD signal provides more information than the used Kikuchi pattern. The presentation discusses several parts of the detected signal and how they can be interpreted. T2 - EBSD 2014 CY - Pittsburgh, Pennsylvania, USA DA - 17.06.2014 KW - Electron backscatter diffraction KW - Simulation KW - Kikuchi pattern KW - Magnetite KW - Maghemite KW - Hematite PY - 2014 AN - OPUS4-37899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Link, T. A1 - Svetlov, I. L. A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Lucas, H. T1 - Mechanism of porosity growth during homogenisation in single crystal nickel-based superalloys N2 - Several mechanisms for porosity growth in single crystal nickel-based superalloys during homogenisation heat treatment have been proposed in the literature. They were carefully checked using different experimental methods, namely quantitative light microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and density measurements. It is shown that the main mechanism is the Kirkendall–Frenkel effect, i.e. generation of voids due to uncompensated efflux of Al atoms from dissolving γ/γ′-eutectic areas. The Al diffusion is supported by the afflux of vacancies from surrounding γ-matrix which results in porosity growth. This conclusion is confirmed by the estimation of the vacancy afflux towards the dissolving eutectic. KW - Ni-base superalloy KW - Eutectic KW - Vacancies KW - Porosity PY - 2013 VL - 104 IS - 8 SP - 776 EP - 782 PB - Carl Hanser Verlag AN - OPUS4-37983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Payton, E. J. A1 - Agudo Jácome, Leonardo A1 - Nolze, Gert T1 - Phase Identification by Image Processing of EBSD Patterns N2 - Automated electron backscatter diffraction (EBSD) is generally unable to distinguish between multiple cubic phases in a specimen without additional information, such as that obtained by simultaneous energy dispersive X-ray spectroscopy (EDS). Small particles of phases with relatively similar compositions push the limits of phase identification using simultaneous EBSD and EDS, and a mismatch exists between the spatial resolutions of these two techniques due to them having different electron interaction volumes. In a recent paper, the present authors explored using backscatter detectors mounted on top of the EBSD detector to obtain atomic number (Z) contrast images that could be used for phase segmentation in cases where the results from the EBSD and EDS signals remain ambiguous. In the present work, we show that similar information can be obtained from the raw EBSD patterns themselves at higher spatial resolution than was obtained from the backscatter detectors, with the additional advantage of having no spatial mismatch between the data collection grids. KW - Phase identification KW - Backscattered electrons KW - EBSD KW - SEM PY - 2013 U6 - https://doi.org/10.1017/S143192761300620X VL - 19 IS - Suppl. 2 SP - 842 EP - 843 AN - OPUS4-37985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Payton, E. A1 - Winkelmann, Aimo T1 - Advanced EBSD Pattern Interpretation through Iterative Post-Processing N2 - Since the BSE signal depends on many factors, like the chemistry of the phase and the acceleration voltage, the size and position of the detector array is (slightly) different from phase to phase so that an (iterative) post-processing of the stored patterns is highly recommended. The derived BSE signal can be used for phase assignment in high resolution and high speed maps when EBSD fails and/or EDS (energy dispersive spectroscopy) needs too much time for a suitable and parallel signal acquisition. KW - Electron backscatter diffraction KW - Phase identification KW - Microstructure KW - SEM PY - 2013 U6 - https://doi.org/10.1017/S1431927613005631 VL - 19 IS - Suppl. 2 SP - 728 EP - 729 AN - OPUS4-37986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert T1 - Combination of colored patterns and cubes for crystallographic point group visualization N2 - A concept based on the application of a cube as a general polyhedron is presented for the visualization of point group symmetry. The cube is used to represent both the highest and lowest crystal symmetries, with differences observable as patterns characteristic to each point group. Patterns are generated using direction-specific color keys, which enable the recognition of point group-specific distribution of vectors in an external reference frame. For the visualization of the incoherent hexagonal crystal classes, two twinned cubes are applied in order to generate symmetry operators that would otherwise be missing. The resulting hexagonal dipyramid is described in the frame of a cube, reducing the number of used symmetry operators from 72 to 60. The complete set of 32 polyhedra are suitable, for example, as a visual aid for understanding the crystal symmetry and/or sub- and supergroup relationships. KW - Subgroup KW - Crystal class KW - Color key KW - Fundamental zone KW - Teaching PY - 2013 U6 - https://doi.org/10.1002/crat.201300134 VL - 48 IS - 7 SP - 476 EP - 489 PB - WILEY-VCH AN - OPUS4-37988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert T1 - Azimuthal Projections: Data Rotation and Projection Switching in Real Time N2 - Pole figures are often used to present crystal orientation data. The huge number of single orientation measurements acquired by electron backscatter diffraction (EBSD) poses a challenge for pole figure representation due to the large number of calculations required. This significantly reduces the speed at which the data may be rotated and affects the ability to switch between different projection types. In the present work, it will be shown that satisfactory representation of orientation data in different projection types can generally be achieved by an imaging of a spherical projection. With this approach, explicit calculation of the projections is no longer required, allowing for both real-time dataset rotation and real-time switching between all projection types relevant to materials science. The technique can be applied to any other directional property distribution, for example, not only for EBSD orientation presentation. KW - Stereographic projection KW - Equal area projection KW - Gnomonic projection KW - Azimuthal projection KW - Crystal orientation KW - Projection imaging KW - Coordinate transformation KW - Real-time rotation PY - 2013 U6 - https://doi.org/10.1017/S1431927613001414 VL - 19 SP - 950 EP - 958 PB - Microscopy Society of America AN - OPUS4-37989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reith, F. A1 - Fairbrother, L. A1 - Nolze, Gert A1 - Wilhelmi, O. A1 - Clode, P. L. A1 - Gregg, A. O. A1 - Parsons, J. E. A1 - Wakelin, S. A. A1 - Pring, A. A1 - Hough, R. A1 - Southam, G. A1 - Brugger, J. T1 - Nanoparticle factories: Biofilms hold the key to gold dispersion and nugget formation N2 - Biofilms living on gold (Au) grains play a key role in the biogeochemical cycle of Au by promoting the dispersion of Au via the formation of Au nanoparticles as well as the formation of secondary biomorphic Au. Gold grains from Queensland, Australia, are covered by a polymorphic, organic-inorganic layer that is up to 40 μm thick. It consists of a bacterial biofilm containing Au nanoparticles associated with extracellular polymeric substances as well as bacterioform Au. Focused ion beam (FIB) sectioning through the biofilm revealed that aggregates of nanoparticulate Au line open spaces beneath the active biofilm layer. These aggregates (bacterioform Au type 1) resulted from the reprecipitation of dissolved Au, and their internal growth structures provide direct evidence for coarsening of the Au grains. At the contact between the polymorphic layer and the primary Au, bacterioform Au type 2 is present. It consists of solid rounded forms into which crystal boundaries of underlying primary Au extend, and is the result of dealloying and Ag dissolution from the primary Au. This study demonstrates that (1) microbially driven dissolution, precipitation, and aggregation lead to the formation of bacterioform Au and contribute to the growth of Au grains under supergene conditions, and (2) the microbially driven mobilization of coarse Au into nanoparticles plays a key role in mediating the mobility of Au in surface environments, because the release of nanoparticulate Au upon biofilm disintegration greatly enhances environmental mobility compared to Au complexes only. KW - Nanomaterial KW - Gold KW - Electron backscatter diffraction PY - 2010 U6 - https://doi.org/10.1130/G31052.1 VL - 38 IS - 9 SP - 843 EP - 846 PB - Geological Society of America AN - OPUS4-37995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Hielscher, R. A1 - Winkelmann, Aimo T1 - Electron backscatter diffraction beyond the mainstream N2 - We present special applications of electron backscatter diffraction (EBSD) which aim to overcome some of the limitations of this technique as it is currently applied in the scanning electron microscope. We stress that the raw EBSD signal carries additional information which is useful beyond the conventional orientation determination. The background signal underlying the backscattered Kikuchi diffraction (BKD) patterns reflects the chemical composition and surface topography but also contains channeling-in information which is used for qualitative real-time orientation imaging using various backscattered electron signals. A significantly improved orientation precision can be achieved when dynamically simulated pattern are matched to the experimental BKD patterns. The breaking of Friedel’s rule makes it possible to obtain orientation mappings with respect to the point-group symmetries. Finally, we discuss the determination of lattice parameters from individual BKD patterns. Subgrain structure in a single quartz grain. The increased noise level in the left map reflects the lower precision of a standard orientation determination using band detection by the Hough transform. The right map results from the same experimental raw data after orientation refinement using a pattern matching approach. The colors correspond an adapted inverse pole figure color key with a maximum angular deviation of about 2° from the mean orientation. KW - Electron backscatter diffraction PY - 2017 U6 - https://doi.org/10.1002/crat.201600252 SN - Online 1521-4079 VL - 52 IS - 1 SP - Special Issue - Article Number: UNSP 1600252, 1 EP - 24 PB - WILEY-VCH AN - OPUS4-37935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - Fast Orientation Projection using OpenGL N2 - Electron backscatter diffraction produces an enormous number of single orientation data which need to be processed but also visualized. The presentation shows that standard hardware can be used to increase the presentation speed considerably. T2 - EBSD 2012 CY - Pittsburgh, Pennsylvania, USA DA - 19.06.2012 KW - electron backscatter diffraction KW - OpenGL KW - crystal orientation KW - pole figure PY - 2012 AN - OPUS4-37900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. I. A1 - Link, T. A1 - Nolze, Gert A1 - Svetlov, I. L. A1 - Bokshtein, B. S. A1 - Rodin, A. O. A1 - Saliwan Neumann, Romeo A1 - Oder, Gabriele T1 - Diffusion processes in multicomponent nickel-base superalloy-nickel system N2 - Optical and scanning electron microscopy, as well as electron microprobe analysis and electron backscatter diffraction, have been used to study diffusion processes that occur in a diffusion pair that consistsof a single-crystal CMSX-10 nickel-base superalloy and polycrystalline nickel, at temperatures of 1050–1250°C. It has been found that, in this system, the distributions of γ-stabilizing elements (Cr, Co, W, and Re) are described by the Boltzmann solution for diffusion between two semiinfinite plates of a binary alloy. The processing of these distributions has shown that the diffusion coefficients of Cr, Co, W, and Re in the multicomponent system are close to those in binary alloys of these elements with Ni. The diffusion redistribution of the elements leads to the dissolution of the γ′ phase in the nickel-base superalloy, growth of nickel grains toward the superalloy constituent of the diffusion pair, and the formation of porosity on both sides of the migrating interface, which is determined from a crystal misorientation of the alloy single crystal and nickel grains. KW - Ni-base superalloy KW - Interface KW - Diffusion KW - Phase transformation KW - Porosity PY - 2014 SN - 0031-918X VL - 115 IS - 1 SP - 21 EP - 29 AN - OPUS4-37980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Payton, E. T1 - Messengers from Space: A Scanning Electron Microscopy Investigation N2 - The macro- and microstructure of iron meteorites provide valuable insights into both the inner structure of our planet and the history of our solar system. High speed collision events in the asteroid belt send the meteorites careening toward Earth. The collisions produce unique deformation microstructures. With cooling rates on the scale of a few degrees per million years, iron meteorites can consist of crystal sizes on the order of meters prior to the collision events. These extremely slow cooling rates result in phase transformations occurring at conditions near thermodynamic equilibrium. Preserving meteorite fragments is important for future studies of phase transformations, material behavior at high strain rates, and the origin of the universe. KW - Meteorite KW - Phase identification KW - Hibbingite KW - Orientation relationship KW - Electron backscatter diffraction KW - Energy dispersive x-ray spectroscopy KW - EDX PY - 2013 IS - 3 SP - 2 EP - 4 PB - GIT Verlag AN - OPUS4-37981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heide, K. A1 - Nolze, Gert A1 - Völksch, G. A1 - Heide, G. T1 - Boracite Mg3[B7O13Cl] from the Zechstein salt deposits N2 - Among the borates in the Middle European Zechstein Salt Succession boracite Mg3[B7O13Cl] is the most common mineral in quantity and local distribution. An exceptional enrichment is observed in Stassfurt Serie Z2) in the Stassfurth seam K2H. Boracite is to be found in two varieties: individual crystals in cubic, tetrahedral or dodecahedral habit on the one hand and fibrous crystals so-called “stassfurtite” on the other hand. The formation conditions such widely spread borates in the salt succession are ambiguous in two respects. First of all the synthetic formation of boracites is to be made by hydrothermal or melt conditions. Both processes can be suspended for the salt succession. Furthermore the cubic modification is stable above 265°C for the Mg-boracite. The cubic, tetrahedral or dodecahedral habit could be used as a geothermometer, but such conditions can be exclude by the paragenetic minerals, esp. carnallite (MgKCl3 x 6H2O). The chemical composition of orthorhombic, pseudo-cubic boracite depends on the location. Pure Mg-boracite in hexahedral habit and in fibrous habit, so-called “stassfurtite”, occurs in the North Harz region, whereas the Fe-, Mn-, Mg-boracite appears in the South Harz region. Until now the source of boron, the time of formation of crystals, but also the reasons for the differences in habit of the single hexahedral crystals are still unclear. The formation during a diagenetic/metamorphic process is evident. However, the preferred formation in Stassfurt seam could be an indication for the boron enrichment in an early diagenetic process. Furthermore permit the determination of the thermal stability and the volatile content of crystals conclusions to the chemical composition of the fluid. The observed variation suggests that the condition of crystal growth as well as the chemical composition of fluid repeatedly changed over the time. Randomly occuring xenomorpheous anhydrite and magnesite inclusions within single boracite crystals have been interpreted as an indication to factors of chemical milieu during the formation of crystals. The reversible phase transition temperature of the boracite is a linearly function of the iron and manganese content and varies from 265°C for Mg-boracite to 330°C for Fe(Mn)-boracite. The thermal decomposition of boracite is determined by two processes. The decomposition started with a boron-chlorine release (BOCl?), having a maximum rate at 1050°C. Additionally to this release one observes a simultaneous emission of H2O, HCl, HF, CO2 , N2 , SO2 , H2 , and hydro carbons. The results give evidence for the aged approach of a secondary formation of boracite within the complete Stassfurt seam, possibly in connection with the formation of salt diapirs in the Jura and Cretaceous period. The wider environmental distribution of borates is an indication of chemical transport processes within the salt succession. This should be a more important issue in the discussion about the utilisation of salt diapirs for the storage of nuclear waste. KW - Borate KW - Boracite KW - Thermal behaviour KW - Electron backscatter diffraction KW - Energy-dispersive x-ray spectroscopy PY - 2013 U6 - https://doi.org/10.1524/zkri.2013.1633 VL - 228 SP - 467 EP - 475 PB - Oldenbourg Wissenschaftsverlag, München AN - OPUS4-37982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martin, S. A1 - Walnsch, A. A1 - Nolze, Gert A1 - Leineweber, A. A1 - Léaux, F. A1 - Scheuerlein, C. T1 - The crystal structure of (Nb0.75Cu0.25)Sn-2 in the Cu-Nb-Sn system N2 - During the processing of superconducting Nb3Sn wire, several intermediate intermetallic phases including a previously encountered Cu-Nb-Sn phase show up. The yet unknown crystal structure of this phase is now identified by a combination of different experimental techniques and database search to be of the hexagonal NiMg2 type with a proposed composition of about (Nb0.75Cu0.25)Sn2. The structure determination started from an evaluation of the lattice parameters from EBSD Kikuchi patterns from quenched material suggesting hexagonal or orthorhombic symmetry. A database search then led to the hexagonal NiMg2 type structure, the presence of which was confirmed by a Rietveld analysis on the basis of high energy synchrotron X-ray powder diffraction data. Assuming a partial substitution of Nb in orthorhombic NbSn2 by Cu, the change of the valence electron concentration provokes a structural transformation from the CuMg2 type for NbSn2 to the NiMg2 type for (Nb0.75Cu0.25)Sn2. In the previous literature the (Nb0.75Cu0.25)Sn2 phase described here has occasionally been referred to as Nausite. KW - Electron backscatter diffraction KW - X-ray diffraction KW - Intermetallic compound KW - Structure solution KW - Superconductor PY - 2017 U6 - https://doi.org/10.1016/j.intermet.2016.09.008 SN - 0966-9795 SN - 1879-0216 VL - 80 SP - 16 EP - 21 PB - Elsevier Ltd. AN - OPUS4-37874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - Introduction to PowderCell N2 - The presentation give a short introduction into the free-available software PowderCell (BAM)for the simulation of X-ray diffraction patterns of polycrystalline materials. T2 - PowderCell Users meeting CY - Joinville, Brazil DA - 19.10.2015 KW - X-ray diffraction KW - Simulation KW - Structure viewer KW - Subgroup relationships PY - 2015 AN - OPUS4-37791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert A1 - Winkelmann, Aimo A1 - Hielscher, R. A1 - Han, M. A1 - Li, L. A1 - Payton, E. T1 - EBSD: more reliable and accurate N2 - The presentation discusses numerous new approaches in order to increase precision and accuracy of electrom backscatter diffraction measurements. T2 - 1st EBSD Workshop CY - Belo Horizonte, Brazil DA - 17.09.2015 KW - Orientation mapping KW - Electron backscatter diffraction KW - Lattice parameter determination KW - Orientation precision KW - Orientation noise PY - 2015 AN - OPUS4-37797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert A1 - Winkelmann, Aimo T1 - The challenge of band detection N2 - The presentation demonstrates different traps which are related to the detection of Kikuchi bands in EBSD patterns. T2 - EBSD 2015 CY - Glasgow, UK DA - 30.03.2015 KW - Electron backscatter diffraction KW - Image processing KW - Pseudo symmerty KW - Crystal lattice KW - Pyrite KW - Pattern matching KW - Misindexing PY - 2015 AN - OPUS4-37805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. I. A1 - Petrushin, N. V. A1 - Link, T. A1 - Nolze, Gert A1 - Loshchinin, Yu. V. A1 - Gerstein, G. T1 - Thermal stability of the structure of a heat-resistant cobalt alloy hardened with intermetallic γ'-phase precipitates N2 - The thermal stability of the microstructure of a heat-resistant cobalt alloy, which consists of a γ solid solution strengthened with γ'-phase precipitates, has been studied. The temperature behavior of the dissolution of the hardening γ' phase and the kinetics of its coarsening at 700 and 800°C have been determined. It is found that, during prolonged annealing at 800°C, the γ' → β phase transformation occurs. KW - Superalloy KW - Microstructure KW - Hardening KW - Electron backscatter diffraction KW - TEM PY - 2016 U6 - https://doi.org/10.1134/S0036029516040078 SN - 0036-0295 VL - 2016 IS - 4 SP - 286 EP - 291 PB - Pleiades Publishing AN - OPUS4-37768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - Microstructure characterization of the Treysa meteorite N2 - Microstructure descripton of heat-affected zone, fusion crust and main metal of the Treysa iron using scanning electron microscopy, EBSD and EDS. T2 - 8. Deutsches Meteoriten Kolloquium, CY - Zella Willingshausen, Germany DA - 02.04.2016 KW - Electron backscatter diffraction KW - EDX KW - Light microscopy KW - Microstructure KW - Oxidation PY - 2016 U6 - https://doi.org/10.13140/RG.2.1.3387.8161 AN - OPUS4-37769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Buchheim, Michaela T1 - Microstructure investigations of iron meteorites by EBSD and EDS analyses N2 - Meteorites are a unique and inspiring material for microstructural studies because if their very specific genesis. Iron meteorites have been formed under unimaginable cooling rates of a few ten Kelvins per million years so that the observable transformation of the formerly huge Fe-Ni single crystals of taenite occurred under nearly-equilibrium conditions. Octahedrites (meteorites having a Ni content between 6...15%) are characterized by ribbons of the low-temperature Fe-Ni phase kamacite separated by rims of residual taenite. This very specific feature is known as Widmanstaetten structure and has been investigated by synchrotron radiation in order to cover a higher volume fraction for a statistically relevant description of orientation relationships. However, plessite – a microstructure mainly consisting of the same phases – reflects the orientation relationship between kamacite and taenite as well. For their characterization, a scanning electron microscope is very suitable in order to investigate crystal orientations or identify phases. Despite the apparently ideal formation circumstances of iron meteorites, Ni concentration profiles prove non-equilibrium conditions. Combined EDS (energy dispersive spectroscopy) and EBSD (electron backscatter diffraction) measurements at a selected plessitic region of the Cape York iron shows that a correlation exists between Ni-concentration and the locally detected orientation relationship. T2 - 15th European Microscopy Congress CY - Manchester, UK DA - 16.09.2012 KW - Phase identification KW - Corrosion KW - Chloride KW - Dermbach PY - 2012 SP - 90 AN - OPUS4-37775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vos, M. A1 - Winkelmann, Aimo A1 - Nolze, Gert T1 - Element-specific Kikuchi patterns of Rutile N2 - The kinetic energy of keV electrons backscattered from a rutile (TiO2) surface depends measurably on the mass of the scattering atom. This makes it possible to determine separately the angular distribution of electrons backscattered elastically from either Ti or O. Diffraction effects of these backscattered electrons inside the rutile crystal lead to the formation of Kikuchi patterns. The element-resolved Kikuchi patterns of Ti and O differ characteristically, but each can be described fairly well in terms of the dynamical theory of diffraction. Qualitatively, much of the differences can be understood by considering the relative arrangement of the Ti and O atoms with respect to planes defined by the crystal lattice. KW - Electron Rutherford backscattering KW - TiO2 KW - Kikuchi pattern KW - EBSD pattern KW - Simulation PY - 2015 U6 - https://doi.org/10.1016/j.ultramic.2015.04.018 SN - 0304-3991 VL - 156 SP - 50 EP - 58 AN - OPUS4-37787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - SEM-TKD: Signal formation, practical challenges and related applications N2 - TKD and EBSD will be compared and benefits as well as limitations of TKD will be discussed. T2 - XIV Brazilian MRS Meeting CY - Rio de Janeiro, Brazil DA - 27.09.2015 KW - TKD KW - EBSD KW - Kikuchi diffraction KW - Nanoanalytic KW - Orientation mapping PY - 2015 AN - OPUS4-37788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - Simulation of powder diffraction patterns N2 - The theory of powder diffraction simulation is explained at the example of PowderCell, a free-available software of BAM. T2 - PowderCell Users meeting CY - Joinville, Brazil DA - 21.09.2015 KW - Powder diffraction KW - X-ray diffraction KW - Phase analysis KW - Simulation PY - 2015 AN - OPUS4-37789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lühr, T. A1 - Winkelmann, Aimo A1 - Nolze, Gert A1 - Krull, D. A1 - Westphal, C. T1 - Direct Atom Imaging by Chemical-Sensitive Holography N2 - In order to understand the physical and chemical properties of advanced materials, functional molecular adsorbates, and protein structures, a detailed knowledge of the atomic arrangement is essential. Up to now, if subsurface structures are under investigation, only indirect methods revealed reliable results of the atoms’ spatial arrangement. An alternative and direct method is three-dimensional imaging by means of holography. Holography was in fact proposed for electron waves, because of the electrons’ short wavelength at easily accessible energies. Further, electron waves are ideal structure probes on an atomic length scale, because electrons have a high scattering probability even for light elements. However, holographic reconstructions of electron diffraction patterns have in the past contained severe image artifacts and were limited to at most a few tens of atoms. Here, we present a general reconstruction algorithm that leads to high-quality atomic images showing thousands of atoms. Additionally, we show that different elements can be identified by electron holography for the example of FeS₂ . KW - holography KW - electron diffraction KW - atomic imaging KW - photoemission KW - electron backscattering PY - 2016 U6 - https://doi.org/10.1021/acs.nanolett.6b00524 VL - 16 IS - 5 SP - 3195 EP - 3201 PB - American Chemical Society AN - OPUS4-37739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dietrich, D. A1 - Nolze, Gert A1 - Mehner, T. A1 - Nickel, D. A1 - Lampke, T. T1 - EDS/EBSD studies and HR-EBSD pattern analysis on pre-Inca ceramic fragments recovered during San José de Moro Archaeology Program N2 - Pre-Inca civilizations like the coastal cultures Moche and Nazca (Early Intermediate) and the inland culture Wari (Middle Horizon) were agrarian societies which supported indigenous elites of impressive wealth, power, and organization. With the expansion of the Wari Empire, the polychrome style and technique of Nazca propagated to the other cultures. High status burials, most of the Late Moche Fine Line ceramics and a large corpus of ceramics with Wari-derived decoration have been recovered in San José de Moro since 1991. The degree of transfer of procedures in this highly interactive scenario is of special interest: is there a limitation to decoration or is it adopted by the local potters also regarding the formulation of the ceramic bodies? In this context the relative amount, size and type of incorporated non-plastic inclusions as temper are important. T2 - The 16th European Microscopy Congress 2016 CY - Lyon, France DA - 28.08.2016 KW - EBSD KW - EDX KW - Ceramic KW - Phase distribution KW - Microstructure KW - Texture KW - Phase identification KW - SEM PY - 2016 U6 - https://doi.org/10.1002/9783527808465.EMC2016.4462 SP - 4462 PB - John Wiley & Sons AN - OPUS4-37740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Hielscher, R. ED - Hielscher, Ralf T1 - Orientations - perfectly colored N2 - The inverse pole figure (IPF) coloring for a suitable evaluation of crystal orientation data is discussed. The major goal is a high correlation between encoding color and crystal orientation. Revised color distributions of the fundamental sectors are introduced which have the advantages of (1) being applicable for all point groups, (2) not causing color discontinuities within grains, (3) featuring carefully balanced regions for red, cyan, blue, magenta, green and yellow, and (4) an enlarged gray center in opposition to a tiny white center. A new set of IPF color keys is proposed which is the result of a thorough analysis of the colorization problem. The discussion considers several topics: (a) the majority of presently applied IPF color keys generate color discontinuities for specifically oriented grains; (b) if a unique correlation between crystal direction and color is requested, discontinuity-preventing keys are possible for all point groups, except for 4, 3 and 1; (c) for a specific symmetry group several IPF color keys are available, visualizing different features of a microstructure; and (d) for higher symmetries a simultaneous IPF mapping of two or three standard reference directions is insufficient for an unequivocal orientation assignment. All color keys are available in MTEX, a freely available MATLAB toolbox. KW - Electron backscatter diffraction KW - Color coding KW - Symmetry groups KW - Orientation description PY - 2016 U6 - https://doi.org/10.1107/S1600576716012942 SN - 0021-8898 SN - 1600-5767 VL - 49 IS - 5 SP - 1786 EP - 1802 AN - OPUS4-37741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, L. A1 - Han, M. A1 - Nolze, Gert T1 - The determination of lattice parameters using single EBSD patterns N2 - A typical electron backscatter diffraction (EBSD) pattern usually contains more than a hundred of Kikuchi poles that formed by intersecting dozens of visible Kikuchi bands. The poles correspond to zone axes in real space or lattice planes in reciprocal space. The band widths are inversely proportional to the interplanar spacings of diffracting lattice planes, and the angle formed by the beam source and two band center-lines approximately corresponds to angle between two lattice planes. However, EBSD patterns always suffer from gnomic distortions. In addition, the band width measurement has a relative error of 5-20% due to the complex profile. Thus, an EBSD pattern always provides abundant crystallographic information but disappointingly low accuracy. T2 - Microscopy & MicroAnalysis 2016 CY - Columbus, Ohio, USA DA - 24.07.2016 KW - Electron backscatter diffraction KW - Lattice parameter determination PY - 2016 UR - https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S1431927616004025 SN - 1431-9276 SN - 1435-8115 VL - 22 SP - Suppl. 3, 634 EP - 635 AN - OPUS4-37742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkelmann, Aimo A1 - Nolze, Gert T1 - Orientation analysis of non-centrosymmetric crystal structures using electron backscatter diffraction N2 - Crystal structures that show a broken symmetry in their cubic and hexagonal modifications are of great relevance for optoelectronic and photonic applications. This is why methods which are sensitive to non-centrosymmetric structures are important for analysis of these materials in technological applications. T2 - 24th Annual Conference of the german Crystallographic Society CY - Stuttgart, Germany DA - 14.03.2016 KW - Electron backscatter diffraction KW - Non-centrosymmetry KW - Friedel's rule KW - Pattern matching KW - GaN KW - GaP PY - 2016 VL - 36 Supplement SP - 22 PB - Walter de Gruyter GmbH & Co KG AN - OPUS4-37743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkelmann, Aimo A1 - Nolze, Gert A1 - Voss, M. A1 - Salvat-Pujol, F. A1 - Werner, W. S. M. T1 - Physics-based simulation models for EBSD: advances and challenges N2 - EBSD has evolved into an effective tool for microstructure investigations in the scanning electron microscope. The purpose of this contribution is to give an overview of various simulation approaches for EBSD Kikuchi patterns and to discuss some of the underlying physical mechanisms. T2 - EMAS 2015 - 14th European Workshop on MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS CY - Portoroz, Slovenia DA - 03.05.2015 KW - Electron backscatter diffraction KW - Simulation KW - Dynamical theory KW - Kinematic theory PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-377469 VL - 109 SP - 012018-1 EP - 012018-13 AN - OPUS4-37746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, Aimo A1 - Nolze, Gert T1 - Channeling-enhanced EDX for polarity resolved crystal orientation determination N2 - Using channeling-enhanced energy-dispersive X-ray spectroscopy (EDX), we demonstrate polarity sensitive orientation determination of a non-centrosymmetric crystal in the scanning electron microscope. The authors observe a characteristic asymmetry in the channeling-enhanced, angle-dependent EDX data of a GaAs sample, which is in good agreement to simulations using the dynamical theory of diffraction for the incident electron beam. This allows us to assign the orientation of the GaAs crystal according to the non-centrosymmetric point group. The method shown here overcomes the limitation of a reduced point-group sensitivity of electron backscatter diffraction Patterns and electron channeling patterns for crystalline phases that contain atoms of approximately equal electron scattering cross sections. KW - Channeling KW - EDX KW - EDS KW - Composition KW - GaAs KW - GaP PY - 2016 U6 - https://doi.org/10.1002/crat.201600258 SN - 0232-1300 SN - 0023-4753 VL - 51 IS - 12 SP - 752 EP - 756 AN - OPUS4-38098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Glowacka, A. A1 - Wozniak, M. J. A1 - Nolze, Gert A1 - Swiatnicki, W. A. T1 - Hydrogen induced phase transformations in austenitic-ferritic steel N2 - The hydrogen influence on the microstructure of the austenitic-ferritic Cr22-Ni5-Mo3 stainless steel was investigated. Cathodic hydrogen charging was performed electrochemically from aqueous solution of 0.1M H2SO4 with hydrogen entry promoter addition. The aim of this study was to reveal microstructural changes appearing during the hydrogen charging and particularly to clarify the occurrence of phase transformations induced by hydrogen. The specific changes in both phases of steel were observed. In the ferritic phase, strong increase of dislocation density was noticed. Longer time of hydrogen charging leaded also to the strips and twin plates formation in ferrite phase. In the austenitic phase, the generation of stacking faults, followed by the formation of α' martensite was remarked. KW - Steel KW - Hydrogen KW - Embrittlement KW - Electron backscatter diffraction KW - SEM PY - 2006 U6 - https://doi.org/10.4028/www.scientific.net/SSP.112.133 SN - 1662-9779 VL - 112 SP - 133 EP - 140 AN - OPUS4-38031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Geist, V. T1 - A new method for the investigation of orientation relationships in meteoritic plessite N2 - The orientation relationship (OR) between the bcc and fcc phase in the plessite microstructure of the iron meteorites Watson, Agpalilik and Gibeon has been analysed in a scanning electron microscope using electron back-scattered diffraction (EBSD). A very strong OR exists, independently on the analysed plessite type and the observed spreading of single orientation data. The agreement between the experimental orientation distribution and existing models varies for each meteorite. The black plessite in the Agpalilik corresponds to the Nishiyama-Wassermann model whereas the Duplex plessite of the Gibeon meteorite shows an OR close to the Kurdjumov-Sachs model. The Watson meteorite is strongly deformed so that a general OR is difficult to determine due to the blurred experimental orientation distribution. KW - Meteorite KW - Orientation relationship KW - Steel KW - Electron backscatter diffraction KW - Kurdjumov-Sachs KW - Nishiyama-Wassermann PY - 2004 U6 - https://doi.org/10.1002/crat.200310193 SN - 0023-4753 SN - 0232-1300 VL - 39 IS - 4 SP - 343 EP - 352 AN - OPUS4-38032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraus, Werner A1 - Nolze, Gert T1 - POWDER CELL-A Program for the representation and manipulation of crystal structure and calculation of the resulting X-ray powder pattern N2 - The main component of this program is a simultaneous representation of the unit cell and the calculated powder pattern. It allows the manipulation of the Crystal structure by moving selected atoms of the asymmetric unit. The resulting powder pattern can be directly compared to experimental data in order to obtain reliable starting values for further computations in refinement programs. KW - XRD KW - Simulation KW - PowderCell KW - Programming KW - Crystal structure KW - Refinement PY - 1996 SN - 0021-8898 VL - 29 SP - 301 EP - 303 AN - OPUS4-38033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Nolze, Gert ED - Sen Gupta, S. P. ED - Chatterjee, P. T1 - PowderCell : a mixture between crystal structure visualizer, simulation and refinement tool N2 - The program PowderCell is a crystallographic tool for visualization of Crystal structures. However, it offers also non-conventional features like the fulautomatical generation of subgroups or the consideration of non-standard settings of space-group types. On the one Hand the program is very useful for non-crystallographers who like to get an impression of the atomic arrangement within the unit cell. But also for crystallographers it is recommendable because it contains a lot of additional information which can be extracted and used like data given in the International Tables for Crystallography, Vol. A. However, the most important advantage of the program is the simultaneous calculation of the X-ray or neutron diffraction powder patterns for a mixture of up to 10 crystalline phases. Between more than 7 different characteristic radiations can be chosen and their influence on the resulting powder pattern can be studied. Furthermore, experimental diffractograms can be analysed using a refinement procedure. The implemented LeBail-algorithm allows the investigation of unknown phases. In combination with the refinement algorithm an interface to Shelx offers the possibility for a step by step ab initio structure analysis. Certainly, the user-friendly shell is one reason that especially users who are not so familar with space-group symmetry, crystal structure data or diffractometry use this powerful tool for the solution of scientific or analytical problems as well as in teaching. KW - XRD KW - Simulation KW - Crystal structure KW - Neutron diffraction PY - 2002 SN - 8177642626 SN - 9788177642629 SP - 146 EP - 155 PB - Allied Publishers CY - Kolkata, India AN - OPUS4-38035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Nolze, Gert ED - Sen Gupta, S. P. ED - Chatterjee, P. T1 - The determination of residual stress N2 - X-ray stress analysis on crystalline materials is based on the determination of elastic lattice strains. The strains described by the shift of peak positions are converted to stresses by the means of theory of elasticity. The development of the sin2ψ-method of X-ray stress analysis introduced an enormous progress in X-ray stress analysis during the last decades. This report outlines some important elements of X-ray physics and fundamentals of theory of elasticity. The Standard measuring procedure are described and special experimental differences to the common powder diffractometry are outlined. KW - XRD KW - Residual stress PY - 2002 SN - 81-7764-262-6 SN - 9788177642629 SP - 77 EP - 83 PB - Allied Publishers CY - Kolkata, India AN - OPUS4-38036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Kraus, Werner T1 - PowderCell 2.0 for Windows N2 - PowderCell contains a comfortable, user friendly visualization and modification tool for crystal structures. It provides on-line calculation of the corresponding powder diffraction patterns simulating a variety of experimental conditions. The common ICSD and Shelx file formats are supported for importing crystal structure information. It has control of automatic cell transformation and also derivation of subgroups. More than 740 different settings of the 230 space-group types are supported. Up to ten crystal structures can be considered simultaneously. A full pattern refinement enables the direct comparison with experimental diffractograms for quantitative phase analysis, lattice parameter refinement, polynomial background estimation, etc. KW - XRD KW - Simulation KW - Powdercell KW - Software KW - Programming KW - Phase mixtures KW - Crystal structure KW - Subgroup PY - 1998 SN - 0885-7156 VL - 13 IS - 4 SP - 256 EP - 259 PB - Cambridge University Press AN - OPUS4-38037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert T1 - Irrational orientation relationship derived from rational orientation relationships using EBSD data N2 - The determination of the orientation relationship (OR) between α-Fe matrix (bcc) and γ-Fe precipitates (fcc) is discussed using orientation data collected by electron backscatter diffraction (EBSD). The comparatively low accuracy of EBSD is compensated by the high number of measurements what allows a general statement regarding to the mean OR existing in a sample. The representation and discussion is realized on a part of the Bain zone in a {001} pole figure. A discussion of some selected rational OR which are commonly used for the phase boundary characterization between α and γ shows that the pole figures describing a transformation from γ → α are different to those for α → γ. A technique is proposed based on at least three misorientation angles between the experimental OR to the rational OR's as reference. For the misorientation angle distribution a refinement is applied to extract the mean values. They are used to detect the mean OR, what is also possible for only a few or even a single precipitate if the number of measurements describing the phase boundary is sufficiently high. KW - Orientation mapping KW - Orientation relationship KW - Electron backscatter diffraction KW - Kurdjumov-Sachs KW - Nishiyama-Wassermann KW - Misorientation PY - 2008 U6 - https://doi.org/10.1002/crat.200711058 VL - 43 IS - 1 SP - 61 EP - 73 PB - WILEY-VCH AN - OPUS4-38009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Link, T. A1 - Nolze, Gert T1 - SEM investigation of interfacial dislocations in nickel-base superalloys N2 - A new technique for investigation of interfacial dislocations in nickel-base superalloys by scanning electron microscopy is presented. At high temperatures the pressure of interfacial dislocations against the gamma/gamma'-interface causes grooves. This 'fingerprint of the dislocation network' is visualized by deep selective etching, which removes the gamma'-phase down to the gamma/gamma'-interface. Compared with transmission electron microscopy, the proposed method has important advantages: observation of large sample areas, no superposition of dislocations lying in different specimen depths, possibility of three-dimensional view of dislocation configurations, information about the dislocation mobility, reduced time for preparation and visualization. The method can be applied for multiphase materials where the interface is grooved by interfacial dislocations. KW - Dislocation structure KW - Interface KW - Nickel alloys KW - SEM PY - 2007 VL - 228 IS - 2 SP - 110 EP - 117 PB - The Royal Microscopical Society AN - OPUS4-38016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraus, Werner A1 - Nolze, Gert T1 - PowderCell as teaching tool N2 - PowderCell represents a user friendly program which supports the solution of scientific problems as well as teaching and education. Especially for the last one the program offers a lot of information regarding the space-group type as well as crystal structure used. Therefore, on some universities the program is used successfully to make students familiar with x-ray crystallography. The quasi-simultaneous diffraction pattern simulation visualized the changes caused by the respective crystal structure. However, it is also possible to vary different diffraction parameters and investigate the resulting changes in the interference intensity or the reflection position. In principle, the aim of the program is the intuitive generation of structure models. Therefore, special tools have been implemented to move (rotate or shift) or transform the crystal structure. KW - Simulation KW - PowderCell KW - Crystal structure KW - XRD KW - Neutron KW - Programming PY - 1998 VL - 20 SP - 27 EP - 29 AN - OPUS4-38055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sitzman, S. D. A1 - Nolze, Gert A1 - Nowell, M. M. T1 - EBSD Pattern Quality and its Use in Evaluating Sample Surface Condition N2 - Modern EBSD systems perform diffraction pattern “quality” (PQ) calculations, essentially measurements of the contrast of the brighter bands in the pattern above background, for every pattern analyzed. Since the calculations are independent of EBSD indexing, data are generated from all points on the analyzed sample surface, regardless of indexability or the state of the material beneath. EBSD maps generated from PQ data are like microstructurally sensitive SEM images, collected at EBSD speeds and grid resolutions, with contrast arising from phase density, crystal structure, crystallographic orientation, grain boundary location, near-surface plastic strain, coating density/thickness, and to some extent topography. Grain boundaries and other aspects of sample microstructure are readily revealed, so the PQ map is a very useful characterization tool in its own right, and serves as a reference for EBSD maps generated from indexing-derived data, such as orientation, grain boundary character, phase distribution and strain maps. KW - Electron backscatter diffraction KW - Sample preparation KW - Pattern quality PY - 2010 U6 - https://doi.org/10.1017/S143192761005467X VL - 16 IS - Suppl. 2 SP - 698 EP - 699 PB - Microscopy Society of America AN - OPUS4-37997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Winkelmann, Aimo T1 - Progress in dynamic EBSD pattern simulation N2 - EBSD is nowadays a common technique for the characterization of crystalline microstructures in scanning electron microscopy. The diffraction patterns are often interpreted by superimposing individual Kikuchi bands which are geometrically described by band edges derived from Braggs law. For the typically very simple crystal structures of technically applied materials, such a simplification of the Kikuchi pattern interpretation works sufficiently well, especially for orientation determinations as a main application of EBSD. The more complex crystal structures, however, are a challenge for EBSD indexing routines which in such cases often fail unpredictably. The use of only the intensities of single reflectors for a description of the Kikuchi band intensity and as a cut-off criterion for a pre-selection of the strongest bands are not satisfactory. Often the result will match too many phases, or there are certain deviations in the intensity prediction which must be adapted manually. This is already problematic if one is absolutely sure that the patterns are originating from the expected phase and it becomes a very questionable procedure for an unknown phase. KW - Electron backscatter diffraction KW - Dynamical simulation KW - Geometrical model KW - Kinematic approach KW - Intensity PY - 2010 U6 - https://doi.org/10.1017/S1431927610063324 VL - 16 IS - Suppl. 2 SP - 62 EP - 63 PB - Microscopy Society of America AN - OPUS4-38000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Salge, T. A1 - Nolze, Gert T1 - Innovations in EDS and EBSD Microanalysis: Hyperspectral Imaging for Planetological Applications Using Silicon Drift Detectors (SDD) and EBSD N2 - Within the last decade, silicon drift detectors (SDD) systems have become more and more popular in the field of energy-dispersive spectroscopy (EDS). The main characteristic of the SDDs is their extremely high pulse load capacity of up to 750,000 counts per second at good or reasonable energy resolution (<123eV Mn-Kα, <46eV C-Kα at 100.000 cps). These properties in conjunction with electron backscatter diffraction (EBSD) techniques and modern data processing make a range of innovative analysis options possible, not only high speed mapping but also hyperspectral imaging techniques. T2 - 72nd Annual Meeting of the Meteoritical Society CY - Nancy, France DA - 13.07.2009 KW - Electron backscatter diffraction KW - Energy dispersive x-ray spectroscopy KW - Method combination PY - 2009 VL - Suppl. SP - 5270 AN - OPUS4-38002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abou-Ras, D. A1 - Gibmeier, J. A1 - Nolze, Gert A1 - Gholinia, A. A1 - Konijnenberg, P. T1 - On the capability of revealing the pseudosymmetry of the chalcopyrite-type crystal structure N2 - The tetragonal crystal- structure type of chalcopyrites (chemical formula AIBIIICVI2) is a superstructure of sphalerite type. The c/a ratio differs generally from the ideal value 2, i.e., the crystal structure is pseudocubically distorted. For CuInSe2 and CuGaSe2 thin films, simulations demonstrate that it is theoretically possible to reveal the tetragonality in electron backscatter-diffraction (EBSD) patterns for CuGaSe2, whereas it may not be possible for CuInSe2. EBSD experiments on CuGaSe2 thin films using the ”Advanced Fit” band-detection method show that it is possible to extract accurate misorientation-angle distributions from the CuGaSe2 thin film. Pole figures revealing the texture of the CuGaSe2 thin film are shown, which agree well with X-ray texture measurements from the same layer. KW - Pseudosymmetry KW - Chalcopyrite KW - Electron backscatter diffraction KW - Pattern simulation KW - Pattern matching KW - Sphalerite PY - 2008 U6 - https://doi.org/10.1002/crat.200711082 VL - 43 IS - 3 SP - 234 EP - 239 PB - WILEY-VCH AN - OPUS4-38003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wendt, U. A1 - Nolze, Gert T1 - Correlation between Crystal Orientation, Channeling Contrast and Topography during FIB Milling of Cu Studied by FIB, EBSD, SEM, and AFM N2 - We have studied the anisotropic milling of Cu with respect to the milling rate and the milling topography, as well. The background is twofold: i) anisotropic milling has to be taken into account during the preparation of TEM specimens and in the manufacturing of micro parts from crystalline materials, and ii) the orientation depending milling behaviour can be used to generate topographies with specific properties with respect to, for example, adsorption, wear, and corrosion. KW - FIB KW - AFM KW - Crystal orientation KW - SEM PY - 2007 VL - 44 IS - 5 SP - 236 EP - 238 PB - Carl Hanser Verlag AN - OPUS4-38026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wendt, U. A1 - Nolze, Gert A1 - Heyse, H. T1 - Effect of crystal orientation on imaging contrast and sputter results during focused ion beam milling of Cu studied by FIB, EBSD, SEM, and AFM N2 - During focused ion beam microscopy (FIB) of crystalline materials imaging contrast and milling result are effected by orientation of the crystals with respect to the incident ion beam. This is due to the possibility of ion channeling along preferred crystal directions which effects the depth at which interaction between ions and specimen atoms takes place. As a result of channeling emission of ion induced secondary electrons (iiSE) and secondary ions (SI) as well as the sputter rate decreases. Theoretical channeling orientations and critical angles can be calculated. These effects have been studied quantitatively for polycrystalline recrystallized Cu as a typical model case. KW - Electron backscatter diffraction KW - FIB KW - AFM KW - Crystal orientation PY - 2006 U6 - https://doi.org/10.1017/S1431927606061812 SN - 1431-9276 SN - 1435-8115 VL - 12 IS - Suppl. 2 SP - 1302 EP - 1303 AN - OPUS4-38027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. I. A1 - Nolze, Gert T1 - Investigation of the competitive grain growth during solidification of single crystals of nickel-based superalloys N2 - The competitive growth of columnar grains in a single-grain selector, which is used for directional solidification of single-crystal blades from nickel-based superalloys, has been investigated by electron backscattered diffraction and local X-ray diffraction analysis. It has been found that the competitive grain growth in a starter block is determined by the crystallographic factor: rapidly growing grains with the axial orientation close to the [001] direction dominate in this part of the casting. For the competitive grain growth in a helicoidal separator, the geometric factor (the position of a grain at the input of the separator) is also important. The results obtained suggest that an appropriate geometry of the single-grain selector was chosen. In addition, the distribution of the orientations of columnar grains obtained by electron backscattered diffraction, can be used for approximate estimation of the yield of suitable (i.e., with the deviation of the axial orientation from the [001] direction within a specified tolerance) single-crystal blades. KW - Electron backscatter diffraction KW - Single crystal KW - Growth competition KW - Nickel alloy PY - 2006 U6 - https://doi.org/10.1134/S1063774506040298 SN - 1063-7745 SN - 1562-689X VL - 51 IS - 4 SP - 710 EP - 714 AN - OPUS4-38028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Glowacka, A. A1 - Nolze, Gert A1 - Swiatnicki, W. A. T1 - EBSD study of corrosion fatigue of austenitic-ferritic steel N2 - Fatigue crack propagation investigations have been performed in austenitic-ferritic duplex stainless steel H22N5M3 in air and during hydrogen charging, using various frequencies of loading. Strong differences of crack propagation velocity depending on the test conditions were noticed. Lower frequency with applied hydrogen charging led to the huge increase of crack propagation velocity compared to the tests performed in air. To understand such a behaviour in each case and characterize crack mode, the samples were observed using electron back-scattered diffraction (EBSD). It was shown that in air, the fatigue crack propagation involved plastic deformation and the resulting cracks had ductile character. The presence of hydrogen led to more brittle mode of cracking. This effect was also connected with frequency of loading: lower frequency, which assured longer time for hydrogen-crack tip interaction, resulted in the highest crack propagation velocity and the brittle cracking mode with lower amount of plastic deformation. The performed observations indicated that the path of the crack went mostly transgranularly through both austenite and ferrite phases. Phase and grain boundaries were not the preferred paths for crack propagation. KW - Hydrogen KW - Embrittlement KW - Electron backscatter diffraction KW - Steel PY - 2006 SN - 1733-3490 SN - 0004-0770 SN - 0860-7052 VL - 51 IS - 1 SP - 7 EP - 10 AN - OPUS4-38029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert T1 - Interphase boundary characterization in duplex steel and iron meteorites using EBSD technique N2 - The properties of materials are mainly described by the orientation distribution of the crystalline phases in a material. Beside the so considered anisotropy also the grain as well as phase boundaries are of extreme importance for a whole string of properties, e.g. the strength of a material. On the example of the interface between fcc and bcc iron the discovered and derived models are discussed. Although the common models are based on the crystal lattice description, the atomic configuration on the interface is analysed. Since experimentally a wide spread of orientations data appears the consideration of the frequency distribution is proposed to find at least the main orientation relationship between fcc and bcc. High-indexed pole figures as well as the Euler subspace are introduced in order to increase the accuracy and to compare different measurements. For the sake of simplicity EBSD measurements on iron meteorites are used since they commonly consist of large fcc single crystals which transformed to a low and very specific number of bcc grains. In special cases the described procedure could also be used for steels. KW - Orientation relationships KW - Electron backscatter diffraction KW - Steel KW - Iron meteorites KW - Kurdjumov-Sachs KW - Nishiyama-Wassermann PY - 2006 SN - 1733-3490 SN - 0004-0770 SN - 0860-7052 VL - 51 IS - 1 SP - 15 EP - 22 AN - OPUS4-38030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrushin, N. A1 - Hvatzkiy, K. A1 - Gerasimov, V. A1 - Link, T. A1 - Epishin, A. A1 - Nolze, Gert A1 - Gerstein, G. T1 - A single-crystal co-base superalloy strengthened by gamma' precipitates: structure and mechanical properties N2 - An experimental Co-base superalloy was designed from the Ni-base system by exchange of Ni and Co concentrations. The alloy consist of a Co-matrix (γ phase) strengthened by cuboidal precipitates Co3(Al,X) (γ' phase). The γ'-solvus temperature is 1?005?°C. [001] single crystals of this alloy were solidified and tested for tension at different temperatures up to 1?000?°C. It was found that the Co-base alloy has a much lower yield stress than a corresponding Ni-base alloy, but a much higher ductility. The partitioning behaviour of the alloying elements in the Co-base alloy and the deformation mechanisms were investigated by scanning and transmission electron microscopy. KW - Microstructure KW - Precipitation KW - Stress PY - 2015 U6 - https://doi.org/10.1002/adem.201500088 SN - 1438-1656 VL - 17 IS - 6 SP - 755 EP - 760 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-34474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Glenn, A.M. A1 - Hughes, A.E. A1 - Torpy, A. A1 - Nolze, Gert A1 - Birbilis, N. T1 - Defect density associated with constituent particles in AA2024-T3 and its role in corrosion N2 - Electron backscatter diffraction (EBSD) and scanning electron microscopy were combined to study the effect of residual defect density on corrosion initiation in aluminium alloy AA2024-T3. EBSD was used to determine the level of misorientation (MO), from pixel to pixel, within individual grains. The MO can be determined with respect to either the average orientation angle of the grain or with respect to the average orientation angle of the surrounding pixels (in this instance, a matrix of 7×7 surrounding pixels has been applied). Herein, the MO, determined using the surrounding pixels, was used as the means for the assessing the level of defect density within a grain. It was found that there was a noteworthy, but not definitive, correlation of MO with corrosion initiation after 1 min exposure to 0.1 M NaCl solution. Additionally, the S and θ-phase particles were also identified using EBSD, displaying a range of MO and therefore defect density. KW - Al-alloy KW - S-phase KW - EBSD KW - Corrosion KW - AA2024-T3 KW - Defect density PY - 2016 U6 - https://doi.org/10.1002/sia.5813 SN - 0142-2421 SN - 1096-9918 VL - 48 IS - 8 (SI) SP - 780 EP - 788 PB - Wiley CY - Chichester AN - OPUS4-34476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Grosse, C. A1 - Winkelmann, Aimo T1 - Kikuchi pattern analysis of noncentrosymmetric crystals N2 - Different models of Kikuchi pattern formation are compared with respect to their applicability to noncentrosymmetric crystals, and the breakdown of Friedel's rule in experimental electron backscatter diffraction (EBSD) patterns is discussed. Different AIIIBV semiconductor materials are used to evaluate the resulting asymmetry of Kikuchi band profiles for polar lattice planes. By comparison with the characteristic etch pit morphology on a single-crystal surface, the polar character of the measured lattice planes can be assigned absolutely. The presented approach enables point-group-resolved orientation mapping, which goes beyond the commonly applied Laue group analysis in EBSD. KW - EBSD KW - Pattern simulation KW - Point groups KW - Laue groups KW - Electron backscatter diffraction KW - Kikuchi patterns KW - Enantiomorphy; polarity KW - Friedel's rule PY - 2015 U6 - https://doi.org/10.1107/S1600576715014016 SN - 0021-8898 SN - 1600-5767 VL - 48 SP - 1405 EP - 1419 PB - Blackwell CY - Oxford AN - OPUS4-34477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Winkelmann, Aimo A1 - Boyle, A.P. T1 - Pattern matching approach to pseudosymmetry problems in electron backscatter diffraction N2 - We demonstrate an approach to overcome Kikuchi pattern misindexing problems caused by crystallographic pseudosymmetry in electron backscatter diffraction (EBSD) measurements. Based on the quantitative comparison of experimentally measured Kikuchi patterns with dynamical electron diffraction simulations, the algorithm identifies the best-fit orientation from a set of pseudosymmetric candidates. Using measurements on framboidal pyrite (FeS2) as an example, we also show the improvement of the orientation precision using this approach. KW - Pyrite KW - EBSD KW - Pseudosymmetry KW - Cross-correlation KW - Pattern simulation KW - Hough transformation KW - Orientation precision PY - 2016 U6 - https://doi.org/10.1016/j.ultramic.2015.10.010 SN - 0304-3991 VL - 160 SP - 146 EP - 154 PB - Elsevier CY - New York, NY AN - OPUS4-34925 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert A1 - Winkelmann, Aimo T1 - The challenge of band detection T2 - RMS Electron backscatter diffraction meeting CY - Glasgow, UK DA - 2015-03-30 KW - EBSD KW - Electron diffraction KW - Band detection KW - Simulation PY - 2015 SP - 1 EP - 2(?) AN - OPUS4-33029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkelmann, Aimo A1 - Nolze, Gert T1 - Orientation mapping of non-centrosymmetric crystals T2 - RMS Electron backscatter diffraction meeting CY - Glasgow, UK DA - 30.03.2015 KW - EBSD KW - Cross-correlation KW - Non-centrosymmetry KW - Simulation PY - 2015 SP - 1 AN - OPUS4-33030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - Inverse pole-figure colouring: traps and possible solutions N2 - The visualization of spatially resolved single Orientation data, e.g. collected by electron backscatter diffraction (EBSD) in the scanning electron microscope (SEM), is still a challenge since some Orientation coloring schemes have low color sensitivity, and/or specific color discontinuities. The latter appear even for crystal Orientations which are practically identical and characterized only by a tiny misorientation. Euler angle coloring schemes suffer from their lack of intuitiveness. The inverse pole figure (IPF) coloring that has been widely accepted does not display the real Orientation Information for each measurement point, but only the crystallographic description of a single reference direction. For the representation of the complete Orientation information at least a second IPF Orientation map must be shown which displays the crystallographic description for another reference direction. In this context it must be pointed out that the IPF coloring is also not immune to color discontinuities, which are visible as speckled grains (and usually misinterpreted as erroneous Orientation determinations by EBSD). However, a general analysis of the commonly used color keys shows that color discontinuities are a consequence of the crystal symmetry for 6 of the 11 centrosymmetric Laue groups. This means that the Orientation description is correct, but the representation tool is inappropriate for properly displaying the orientation information. T2 - EMAS 2013 - 13th European workshop on modern developments and applications in microbeam analysis CY - Porto, Portugal DA - 12.05.2013 KW - BSE contrast KW - Intensity extraction KW - Background PY - 2013 SP - 386 AN - OPUS4-32669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, Aimo A1 - Nolze, Gert T1 - Point-group sensitive orientation mapping of non-centrosymmetric crystals N2 - We demonstrate polarity-sensitive orientation mapping of non-centrosymmetric phases by Electron Backscatter Diffraction (EBSD). The method overcomes the restrictions of kinematic orientation determination by EBSD, which is limited to the centro-symmetric Laue-groups according to Friedel's rule. Using polycrystalline GaP as an example, we apply a quantitative pattern matching approach based on simulations using the dynamical theory of electron diffraction. This procedure results in a distinct assignment of the local orientation according to the non-centrosymmetric point group of the crystal structure under investigation. KW - Scanning electron microscopy KW - Electron backscatter diffraction KW - Orientation mapping KW - Non-centrosymmetric crystals PY - 2015 U6 - https://doi.org/10.1063/1.4907938 SN - 0003-6951 SN - 1077-3118 VL - 106 SP - 072101-1 EP - 072101-4 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-32670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert T1 - Euler angles and crystal symmetry N2 - For the description of (single) crystal orientations, e.g. as measured by electron backscatter diffraction (EBSD) & X-ray diffraction (XRD), Euler angles are still generally used to import and export data. However, because of the lack of standard definitions for the unit cell reference settings and specimen axes, several transformation descriptions exist which produce different sets of Euler angles for the same orientation. There is also no recommended region within the minimal Euler orientation space into which orientations should be placed. This is the reason why different sets of Euler angles for the same orientation are generated by the available software packages for indexing EBSD patterns. These issues are reviewed and addressed. The influence of crystal symmetry in form of chiral (enantiomorphic) groups is discussed, as well as how multiple, but symmetry-equivalent sets of Euler angles can be reduced in order to deliver a unique orientation description. The Euler coloring algorithms applied to EBSD map data is critically discussed. The specific case of cubic symmetry, especially the effect of the three-fold rotation on the Euler space is investigated in more detail for the highest-symmetric chiral group 432. Recommendations for standard settings of the unit cell to orthogonal coordinate system transformation are given which exploit inherent symmetry. KW - EBSD KW - Crystal orientation KW - Pattern indexing KW - Subgroup relationship PY - 2015 UR - http://onlinelibrary.wiley.com/doi/10.1002/crat.201400427/full U6 - https://doi.org/10.1002/crat.201400427 SN - 0023-4753 SN - 1521-4079 SN - 0232-1300 VL - 50 IS - 2 SP - 188 EP - 201 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-32545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Winkelmann, Aimo T1 - Crystallometric and projective properties of Kikuchi diffraction patterns N2 - Kikuchi diffraction patterns can provide fundamental information about the lattice metric of a crystalline phase. In order to improve the possible precision and accuracy of lattice parameter determination from the features observed in Kikuchi patterns, some useful fundamental relationships of geometric crystal-lography are reviewed, which hold true independently of the actual crystal symmetry. The Kikuchi band positions and intersections and the Kikuchi band widths are highly interrelated, which is illustrated by the fact that all lattice plane trace positions of the crystal are predetermined by the definition of only four traces. If, additionally, the projection centre of the gnomonic projection is known, the lattice parameter ratios and the angles between the basis vectors are fixed. A further definition of one specific Kikuchi band width is sufficient to set the absolute sizes of all lattice parameters and to predict the widths of all Kikuchi bands. The mathematical properties of the gnomonic projection turn out to be central to an improved interpretation of Kikuchi pattern data, emphasizing the importance of the exact knowledge of the projection centre. KW - EBSD KW - Crystallography KW - Kikuchi patterns KW - Projective geometry PY - 2017 U6 - https://doi.org/10.1107/S1600576716017477 SN - 1600-5767 VL - 50 IS - Part 1 SP - 102 EP - 119 PB - International Union of Crystallography AN - OPUS4-39061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Midtlyng, Jan A1 - Epishin, A. I. A1 - Petrushin, N. V. A1 - Link, T. A1 - Nolze, Gert A1 - Svetlov, I. L. A1 - Reimers, W. T1 - Creep behavior of a γ΄-strengthened Co-base alloy with zero γ/γ΄-lattice misfit at 800 °C, 196 MPa N2 - Deformation and structural behavior of an experimental γ΄-strengthened Co-base alloy during creep at 800 °C and 196 MPa have been investigated. The characteristic features of this alloy are zero γ/γ΄-lattice misfit and a fine γ/γ΄-microstructure. In the initial condition, the γ΄-precipitates in this alloy are small (size of about 100 nm), have polyhedral morphology, and are separated by the very narrow c-channels (width of about 10 nm). The tests performed up to about 1% creep strain (about 500 h creep time) gave creep curves with a slow constant strain rate and without an apparent transient creep, typical for superalloys with nonzero misfit. In this initial stage of creep, entering of the narrow γ-channels by dislocations is blocked by a strong Orowan force. The micromechanism of creep was identified as an octahedral glide of h011i superdislocations simultaneously in two phases, γ and γ΄. The γ/γ΄-microstructure with zero misfit shows no rafting but rapidly coarsens isotropically. It is concluded that zero misfit is beneficial at the initial stages of the creep but is unfavourable for longterm creep because of the continuous microstructural coarsening. KW - Co-Basis-Legierung KW - Gitterfehlpassung KW - Kriechen KW - Ausscheidung PY - 2017 U6 - https://doi.org/10.1557/jmr.2017.424 SN - 0884-2914 SN - 2044-5326 VL - 32 IS - 24 SP - 4466 EP - 4474 PB - Cambridge Univ. Press CY - Cambridge AN - OPUS4-44027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wäsche, Rolf A1 - Brandt, Guido A1 - Ehrke, Roman A1 - Nolze, Gert A1 - Schmid, Thomas A1 - Sasaki, S. A1 - Woydt, Mathias T1 - Wear behaviour of alpha-alumina in hot steam at high contact pressure N2 - The work examines the wear behaviour of α-aluminium oxide by combining thermodynamic modelling with advanced wear testing as well as analytical methods to get a better understanding of this structural ceramic material wear behavior and its possible use in high temperature steam environment. KW - Aluminium oxide KW - Temperature KW - Hot steam KW - Diaspore KW - Ceramic KW - Wear PY - 2018 U6 - https://doi.org/10.1016/j.wear.2018.02.012 SN - 0043-1648 SN - 1873-2577 VL - 404-405 SP - 22 EP - 30 PB - Elsevier B.V. AN - OPUS4-44449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Dietrich, D. A1 - Lampke, T. A1 - Del-Solar-Velarde, N. A1 - Nickel, D. A1 - Chapoulie, R. A1 - Castillo Butters, L.J. T1 - The potential of EBSD and EDS for ceramics investigations - Case studies on sherds of pre-Columbian pottery N2 - The work focuses on the potential of structural and chemical examinations by scanning electron microscopy based methods for archaeometric studies on ceramics. Achieved by a single preparation technique (polished block sections), the feasibility and benefits of electron backscatter diffraction are demonstrated as case studies using polychrome examples of pre-Columbian pottery (Wari, Moche and Cajamarca). Elemental and phase maps allow for separate consideration of clay and temper. Identification of mineral phases and intergrowths of temper particles provide information for clarifying clay procurement and firing techniques with respect to local versus non-local pottery to enlighten trade relations, technological transfer and shared heritage of pre-Columbian cultures. KW - SEM–EDS/EBSD KW - Pre-Columbian ceramics KW - Temper KW - Pseudobrookite KW - Titanite PY - 2017 VL - 60 IS - 3 SP - 489 EP - 501 AN - OPUS4-45096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chyrkin, A. A1 - Epishin, A. A1 - Pillai, R. A1 - Link, T. A1 - Nolze, Gert A1 - Quaddaker, W. J. T1 - Modeling interdiffusion processes in CMSX-10/Ni diffusion couple N2 - A diffusion couple between directionally solidified nickel and the single crystal Ni-base superalloy CMSX-10 was produced by hot pressing in vacuum. The diffusion couples were heat treated at temperatures between 1050 and 1250 °C. The exposed samples were characterized by SEM/EBSD/EPMA. The interdiffusion results in dissolution of the c¢-Ni3 Al in the superalloy and in growth of nickel grains towards CMSX-10. Rapid diffusion of aluminum from the superalloy into pure nickel leads to a significant formation of pores in the superalloy. The interdiffusion processes were modelled using the finite-element simulation software DICTRA with the databases TCNi5 and MobNi2, tailored specially for Ni-base superalloys. The effect of alloying elements on the interdiffusion profiles is discussed in terms of alloy thermodynamics. The calculated element concentration profiles are in good agreement with the EPMA measurements. The interdiffusion modeling correctly predicts the shapes of the concentration profiles, e.g. kinks on the Al and Ti profiles in the vicinity of the original interface in the joint. The calculation predicts with reasonable accuracy the extent and the location of the Kirkendall porosity. KW - Chemical potential KW - Diffusion KW - EBSD KW - Composition profiles KW - DICTRA modeling KW - Electron probe microanalysis KW - EPMA PY - 2016 U6 - https://doi.org/10.1007/s11669-015-0444-9 SN - 1547-7037 VL - 37 IS - 2 SP - 201 EP - 211 PB - Springer AN - OPUS4-35776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epishin, A.I. A1 - Link, T. A1 - Nolze, Gert A1 - Fedelich, Bernard A1 - Schriever, Sina T1 - Creep behaviour of the single-crystal nickel-base superalloy CMSX-4 at ultra-high homologous temperature N2 - Data about the creep behaviour of metals and their alloys at temperatures close to the melting point are very limited. The reason is that most engineering alloys are used at temperatures below 0.6-0.8 of their melting point, so, Investigation of creep at higher temperatures has no practical relevance. For some special applications however it is important, in our case hot isostatic pressing (HIP) of single-crystal turbine blades cast from nickel-base superalloys. In order to remove porosity the blades are HlPed at temperatures between y'-solvus and solidus where superalloy has no strengthening y'-phase and therefore is very soft. For example, the Company Howmet Castings HIPs the superalloy CMSX-4 at the temperature 1288aC, which corresponds to a homologous temperature of about 0.97=1561 K/1612 K (solidus temperature). Therefore knowledge about the creep behaviour of CMSX-4 at this temperature and understanding of the creep mechanisms are necessary to model the kinetics of pore closure during HIP as well as to plan the Parameters of the HIP process. T2 - CREEP 2015 - 13th International conference on creep and fracture of engineering materials and structures CY - Toulouse, France DA - 31.5.2015 PY - 2015 VL - 825 SP - 19 EP - 20 AN - OPUS4-33527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Mosquera Feijoo, Maria A1 - Nolze, Gert A1 - Rizzo, F. ED - Militzer, M. ED - Botton, G. ED - Chen, L.-Q. ED - Howe, J. ED - Sinclair, C. ED - Zurob, H. T1 - Nano-sized precipitates in an Fe-13Cr alloy formed under oxidizing water vapor atmosphere N2 - Oxidation of a Fe –13Cr alloy under water vapor at 600°C produced a zone of nano-sized precipitation underneath the outside scale formed by iron oxides and Fe–Cr spinel. The majority of the spinel layer shows a fixed orientation relationship to the ferritic matrix: {1 0 0}α || {1 0 0}sp & <0 1 1>α || <0 0 1>sp . However, also the discovered precipitated particles are characterized by the same crystallographic orientation relationship to the respective ferritic parent grain. The habit of the precipitates is best described by a lath morphology with their main axis parallel to <1 0 0> of ferrite. Energy dispersive X-ray spectroscopy (EDX) and electron backscatter diffraction (EBSD) in scanning electron microscope (SEM) have been applied to characterize the oxide layer in micrometer scale. The clearly smaller precipitates were subsequently investigated by transmission electron microscopy (TEM). Specimens have been prepared by focused ion-beam (FIB) milling at an area previously characterized by EBSD. They cover the ferritic base material, but mainly the precipitation zone and the Fe–Cr spinel layer. Energy filtered selected area diffraction (SAD) in the conventional (C)TEM and high-angle annular dark field (HAADF) imaging in the scanning (S)TEM mode were employed in the characterization of the specimens. T2 - PTM 2015 - International conference on solid-solid phase transformations in inorganic materials CY - Whistler, BC, Canada DA - 28.06.2015 KW - Precipitation KW - Nano-crystals KW - Oxidation KW - Phase transformation KW - EBSD KW - TEM PY - 2015 SP - 379 EP - 386 AN - OPUS4-34444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert A1 - Winkelmann, Aimo A1 - Hilscher, Ralf T1 - Advanced qualitative and quantitative EBSD pattern processing T2 - Seminar (PUC) CY - Rio de Janeiro, Brasil DA - 2015-10-01 PY - 2015 AN - OPUS4-34412 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert T1 - SEM-TKD: Signal formation, practical challenges and related applications T2 - Brazil MRS Meeting 2015 CY - Rio de Janeiro, Brasil DA - 2015-09-27 PY - 2015 AN - OPUS4-34414 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert A1 - Winkelmann, Aimo A1 - Hilscher, Ralf A1 - Han, M A1 - Li, L A1 - Payton, E. T1 - EBSD: more reliable and precise T2 - 1st Brazilian EBSD-Meeting CY - Belo Horizonte, Brazil DA - 2015-09-17 PY - 2015 AN - OPUS4-34418 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Winkelmann, Aimo T1 - Exploring structural similarities between crystal phases using EBSD pattern comparison N2 - We discuss the application of EBSD for the analysis of structural features of magnetite and hematite relevant in the topotactic growth of both phases. The orientation relationships of both phases are investigated using characteristically related sets of Kikuchi patterns, which were collected from topotactically intergrown hematite variants and their parent magnetite crystal grain. We address the hexagonal description of trigonal and cubic phases with respect to crystallographic relationships. The combination of locally resolved EBSD measurements and microstructural investigations thus offers a promising opportunity to evaluate orientation relationships and intergrowth between magnetite and hematite. KW - Magnetite KW - Hematite KW - Orientation relationship KW - Transformation KW - Dynamical simulation KW - Intergrowth PY - 2014 U6 - https://doi.org/10.1002/crat.201400091 SN - 0023-4753 SN - 1521-4079 SN - 0232-1300 VL - 49 IS - 7 SP - 490 EP - 501 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-31199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Feldmann, Titus A1 - Haftaoglu, Cetin A1 - Nolze, Gert A1 - Schriever, Sina A1 - Epishin, A. A1 - Camin, B. A1 - Lopez-Galilea, I. A1 - Ruttert, B. A1 - Theisen, W. T1 - Untersuchung des Kriechverhaltens einer Nickelbasis-Superlegierung bei ultrahohen homologen Temperaturen und Anwendung auf das heiß-isostatische Pressen (HIP) N2 - Mit Hilfe des HIP-Verfahrens („Hot Isostatic Pressing“) werden Poren in der einkristallinen Nickel-Basis Superlegierung CMSX-4 kontinuierlich geschrumpft und dadurch die nach der Erstarrung und der Wärmebehandlung vorhandene Porosität stark reduziert. In diesem Beitrag werden experimentelle und numerische Untersuchungen zu den Mechanismen der Porenschrumpfung zusammengefasst. Es zeigt sich, dass das Verformungsverhalten während Kriechversuchen bei der HIP-Temperatur durch Versetzungsgleitung auf oktaedrischen Ebenen dominiert wird. Dagegen zeigen Messungen der Porositätsabnahme und Simulationen des Porenschließens, dass die Kinetik der Porenschrumpfung durch das Phänomen der Leerstellendiffusion zwischen Poren und Kleinwinkelkorngrenzen („Low Angle Boundary“, LAB) bestimmt wird. Im Gegensatz führt die klassische Kristallviskoplastizität zu einer systematischen Überschätzung dieser Kinetik. Der scheinbare Widerspruch lässt sich auflösen, wenn man bedenkt, dass auf der Skala der Poren Versetzungsquellen nicht gleichmäßig verteilt sind, wie in der konventionellen Kristallplastizität implizit angenommen wird. Stattdessen wird in einem weiterführenden Modell davon ausgegangen, das Kleinwinkelkorngrenzen (LABs) als Versetzungsquellen fungieren, während die Scherspannungen sehr stark in der Nähe der Poren lokalisiert sind, was die Emission von Versetzungen deutlich reduziert. T2 - Langzeitverhalten warmfester Stähle und Hochtemperaturwerkstoffe CY - Online meeting DA - 27.11.2020 KW - HIP KW - Superlegierung KW - Kriechen PY - 2020 SN - 978-3-946885-95-5 VL - 2020 SP - 28 EP - 39 PB - Forschungsvereinigung Warmfeste Stähle und Hochtemperaturwerkstoffe AN - OPUS4-51796 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Fedelich, Bernard A1 - Nolze, Gert A1 - Schriever, Sina A1 - Feldmann, Titus A1 - Farzik Ijaz, M. A1 - Viguier, B. A1 - Poquillon, D. A1 - Le Bouar, Y. A1 - Ruffini, A. A1 - Finel, A. T1 - Creep of single crystals of nickel-based superalloys at ultra-high homologous temperature N2 - The creep behavior of single crystals of the nickel-based superalloy CMSX-4 was investigated at 1288 °C, which is the temperature of the hot isostatic pressing treatment applied to this superalloy in the industry. It was found that at this super-solvus temperature, where no gammaPrime-strengthening occurs, the superalloy is very soft and rapidly deforms under stresses between 4 and 16 MPa. The creep resistance was found to be very anisotropic, e.g., the creep rate of [001] crystals was about 11 times higher than that of a [111] crystal. The specimens of different orientations also showed a very different necking behavior. The reduction of the cross-sectional area psi of [001] crystals reached nearly 100 pct, while for a [111] crystal psi = 62 pct. The EBSD analysis of deformed specimens showed that despite such a large local strain the [001] crystals did not recrystallize, while a less deformed [111] crystal totally recrystallized within the necking zone. The recrystallization degree was found to be correlated with deformation behavior as well as with dwell time at high temperature. From the analysis of the obtained results (creep anisotropy, stress dependence of the creep rate, traces of shear deformation, and TEM observations), it was concluded that the main strain contribution resulted from <01-1>{111} octahedral slip. T2 - 3rd European Conference on Superalloys (‘Eurosuperalloys 2018’) CY - Oxford, UK DA - 9.9.2018 KW - Single-crystal KW - Superalloy KW - Creep KW - Isostatic hot pressing (HIP) PY - 2018 U6 - https://doi.org/10.1007/s11661-018-4729-6 SN - 1073-5623 SN - 1543-1940 VL - 49A IS - 9 SP - 3973 EP - 3987 PB - Springer Sciences & Business Media CY - New York, NY AN - OPUS4-45660 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Naresh-Kumar, G. A1 - Vilalta-Clemente, A. A1 - Jussila, H. A1 - Winkelmann, Aimo A1 - Nolze, Gert A1 - Vespucci, S. A1 - Nagarajan, S. A1 - Wilkinson, A. J. A1 - Trager-Cowan, C. T1 - Quantitative imaging of anti-phase domains by polarity sensitive orientation mapping using electron backscatter diffraction N2 - Advanced structural characterisation techniques which are rapid to use, non-destructive and structurally definitive on the nanoscale are in demand, especially for a detailed understanding of extended-defects and their influence on the properties of materials. We have applied the electron backscatter diffraction (EBSD) technique in a scanning electron microscope to non-destructively characterise and quantify antiphase domains (APDs) in GaP thin films grown on different (001)Si substrates with different offcuts. We were able to image and quantify APDs by relating the asymmetrical intensity distributions observed in the EBSD patterns acquired experimentally and comparing the same with the dynamical electron diffraction simulations. Additionally mean angular error maps were also plotted using automated cross-correlation based approaches to image APDs. Samples grown on substrates with a 4° offcut from the [110] do not show any APDs, whereas samples grown on the exactly oriented substrates contain APDs. The procedures described in our work can be adopted for characterising a wide range of other material systems possessing non-centrosymmetric point groups. KW - Polarity KW - Semiconductor KW - Antiphase boundary PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-420167 SN - 2045-2322 VL - 7 SP - Article 10916, 1 EP - 10 AN - OPUS4-42016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartoschewitz, R. A1 - Appel, P. A1 - Barrat, J.-A. A1 - Bischoff, A. A1 - Caffee, M.W. A1 - Franchi, I.A. A1 - Gabelica, Z. A1 - Greenwood, R.C. A1 - Harir, M. A1 - Harries, D. A1 - Hochleitner, R. A1 - Hopp, J. A1 - Laubenstein, M. A1 - Mader, B. A1 - Marques, R. A1 - Morlok, A. A1 - Nolze, Gert A1 - Prudêncio, M.I. A1 - Rochette, P. A1 - Ruf, A. A1 - Schmitt-Kopplin, P. A1 - Seemann, E. A1 - Szurgot, M. A1 - Tagle, R. A1 - Wach, R.A. A1 - Welten, K. C. A1 - Weyrauch, M. A1 - Wimmer, K. T1 - The Braunschweig meteorite − a recent L6 chondrite fall in Germany N2 - On April 23rd 2013 at 2:07 a.m., a 1.3 kg meteorite fell in the Braunschweig suburb Melverode (52° 13′ 32.19″ N. 10° 31′ 11.60″ E). Its estimated velocity was 250 km/h and it formed an impact pit in the concrete fall site with a diameter of 7 cm and a depth of 3 cm. Radial dust striae are present around the impact pit. As a result of the impact, the meteorite disintegrated into several hundred fragments with masses up to 214 g. The meteorite is a typical L6 chondrite, moderately shocked (S4) – but with a remarkably high porosity (up to 20 vol%). The meteorite was ejected from its parent body as an object with a radius of about 10–15 cm (15–50 kg). The U,Th-He gas retention age of ∼550 Ma overlaps with the main impact event on the L-chondrite parent body ∼470 Ma ago that is recorded by many shocked L chondrites. The preferred cosmic-ray exposure age derived from production of radionuclides and noble gas isotopes is (6.0 ± 1.3) Ma. KW - Braunschweig meteorite KW - L chondrite KW - Fall reconstruction KW - Petrology and mineralogy KW - Organic matter KW - IR spectroscopy KW - Bulk chemistry KW - Radionuclides KW - Noble gas isotopes KW - Specific heat PY - 2016 U6 - https://doi.org/10.1016/j.chemer.2016.10.004 SN - 0009-2819 SN - 1611-5864 VL - 77 IS - 1 SP - 207 EP - 224 AN - OPUS4-42018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sobol, Oded A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Eliezer, D. A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Novel approach to image hydrogen distribution and related phase transformation in duplex stainless steels at the sub-micron scale N2 - The effect of electrochemical charging of hydrogen on the structure of a lean duplex stainless steel LDX 2101® (EN 1.4162, UNS S32101) was examined by both Time-of-Flight secondary ion mass spectrometry and electron back-scatter diffraction. The goal is to correlate hydrogen concentration and induced structural changes. Chemical and structural characterizations were done for the same region at the sample's surface with sub-micron spatial resolution. Regions of interest were varying in size between 50 × 50 μm and 100 × 100 μm. The results show a phase transformation of austenite to mainly a defect-rich BCC and scarcely a HCP phase. The phase transformation occurred in deuterium rich regions in the austenite. KW - Time-of-flight secondary ion mass spectrometry KW - ToF-SIMS KW - Electron backscatter diffraction KW - EBSD KW - Hydrogen-assisted cracking KW - Data fusion KW - Lean duplex stainless steel PY - 2017 U6 - https://doi.org/10.1016/j.ijhydene.2017.08.016 SN - 0360-3199 VL - 42 IS - 39 SP - 25114 EP - 25120 AN - OPUS4-42022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, Aimo A1 - Nolze, Gert A1 - Vespucci, S. A1 - Gunsekar, N.-K. A1 - Trager-Cowan, C. A1 - Vilalta-Clemente, A. A1 - Wilkinson, A. J. A1 - Voss, M. T1 - Diffraction effects and inelastic electron transport in angle-resolved microscopic imaging applications N2 - We analyse the signal formation process for scanning electron microscopic imaging applications on crystalline specimens. In accordance with previous investigations, we find nontrivial effects of incident beam diffraction on the backscattered electron distribution in energy and momentum. Specifically, incident beam diffraction causes angular changes of the backscattered electron distribution which we identify as the dominant mechanism underlying pseudocolour orientation imaging using multiple, angle-resolving detectors. Consequently, diffraction effects of the incident beam and their impact on the subsequent coherent and incoherent electron transport need to be taken into account for an in-depth theoretical modelling of the energy- and momentum distribution of electrons backscattered from crystalline sample regions. Our findings have implications for the level of theoretical detail that can be necessary for the interpretation of complex imaging modalities such as electron channelling contrast imaging (ECCI) of defects in crystals. If the solid angle of detection is limited to specific regions of the backscattered electron momentum distribution, the image contrast that is observed in ECCI and similar applications can be strongly affected by incident beam diffraction and topographic effects from the sample surface. As an application, we demonstrate characteristic changes in the resulting images if different properties of the backscattered electron distribution are used for the analysis of a GaN thin film sample containing dislocations. KW - EBSD KW - Channeling-in KW - Background processing KW - Center of mass KW - Backscattered electrons PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-422063 SN - 0022-2720 VL - 267 IS - 3 SP - 330 EP - 346 PB - Wiley & Sons, Ltd. AN - OPUS4-42206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, J. A1 - Farris, L. A1 - Nolze, Gert A1 - Reinsch, Stefan A1 - Cios, G. A1 - Tokarski, T. A1 - Thompson, S. T1 - Microstructure evolution in Inconel 718 produced by powder bed fusion additive manufacturing N2 - Inconel 718 is a precipitation strengthened, nickel-based super alloy of interest for the Additive Manufacturing (AM) of low volume, complex parts to reduce production time and cost compared to conventional subtractive processes. The AM process involves repeated rapid melting, solidification and reheating, which exposes the material to non-equilibrium conditions that affect elemental segregation and the subsequent formation of solidification phases, either beneficial or detrimental. These variations are difficult to characterize due to the small length scale within the micron sized melt pool. To understand how the non-equilibrium conditions affect the initial solidification phases and their critical temperatures, a multi-length scale, multi modal approach has been taken to evaluate various methods for identifying the initial phases formed in the as-built Inconel 718 produced by laser-powder bed fusion (L-PBF) additive manufacturing (AM). Using a range of characterization tools from the bulk differential thermal analysis (DTA) and x-ray diffraction (XRD) to spatially resolved images using a variety of electron microscopy tools, a better understanding is obtained of how these minor phases can be properly identified regarding the amount and size, morphology and distribution. Using the most promising characterization techniques for investigation of the as-built specimens, those techniques were used to evaluate the specimens after various heat treatments. During the sequence of heat treatments, the initial as-built dendritic structures recrystallized into well-defined grains whose size was dependent on the temperature. Although the resulting strength was similar in all heat treated specimens, the elongation increased as the grain size was refined due to differences in the precipitated phase distribution and morphology. KW - Metal additive manufacturing KW - Inconel 718 KW - Heat treatment KW - Grain boundary precipitates KW - Laves phase PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-542758 SN - 2504-4494 VL - 6 IS - 1 SP - 1 EP - 20 PB - MDPI CY - Basel AN - OPUS4-54275 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Svetlov, I. L. A1 - Epishin, A. I. A1 - Petrushin, N. V. A1 - Gerstein, G. A1 - Nolze, Gert A1 - Maier, H. J. T1 - Creep of Directionally Solidified Eutectics Ni/Ni3 Al–NbC under Thermal Cycling N2 - A nickel-based eutectic alloy with a γ/γ'-NbC structure was directionally solidified with a planar front. The specimens were tested for creep under sawtooth thermal cycling in the temperature range from 600 to 1100°C. It has been established that the lifetime under the conditions of thermal cycling is about five times shorter than it is predicted by the linear damage accumulation rule on the basis of results of isothermal creep tests. Faster creep under thermal cycling is caused by the rapid coarsening of the γ/γ' microstructure due to the periodic partial dissolution and reprecipitation of the γ' phase in heating and cooling half-cycles. KW - High temperature nickel-based eutectic alloys KW - γ/γ' matrix KW - Carbide phase NbC KW - In-situ composites KW - Creep under thermal cycling PY - 2022 U6 - https://doi.org/10.1134/S2075113322040347 SN - 2075-1133 VL - 13 IS - 4 SP - 1099 EP - 1108 PB - Springer Science + Business Media CY - Dordrecht AN - OPUS4-55163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A.I. A1 - Nolze, Gert A1 - Alymov, M.I. T1 - Pore Morphology in Single Crystals of a Nickel-Based Superalloy After Hot Isostatic Pressing N2 - The morphology of pores partially shrunk during a half-hour HIP at temperature of 1288 °C and pressure of 103 MPa has been investigated in nickel-based superalloy CMSX-4. The investigation resulted in the following findings: surrounding the shrinking pores by a c¢-shell (Ni3Al), faceting of the pores surface by {023} and {011} planes, and formation the submicroscopic satellite pores connected by channels with the neighboring larger pores. It is assumed that the formation of the c¢-shell around the pores and the faceting of the pore surface is due to diffusion processes occurring during pore shrinkage, and therefore these findings can be considered as arguments supporting the vacancy model of pore annihilation. The submicroscopic satellite pores are expected to be the result of dividing the casting pores of a complex initial shape during their shrinking. The connecting channels are probably required for the gas to escape from the rapidly shrinking small satellite pores into the slowly shrinking large pore. Thus, it is reasonable to assume that the casting pores may contain some amount of gas. KW - HIP KW - Superalloy KW - Porosity KW - Faceting KW - negative crystal growth PY - 2022 U6 - https://doi.org/10.1007/s11661-022-06893-x SN - 1073-5623 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-56409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Treninkov, I. A. A1 - Petrushin, N. V. A1 - Epishin, A. I. A1 - Svetlov, I. L. A1 - Nolze, Gert A1 - Elyutin, E. S. T1 - Experimental Determination of Temperature Dependence of Structural–Phase Parameters of Nickel-Based Superalloy N2 - The temperature dependences of the periods of the crystal lattices of the γ and γ' phases, their dimensional mismatch (misfit), and volume fraction of the γ' phase of an experimental single-crystal hightemperature nickel-based alloy have been determined by X-ray diffraction analysis in the temperature range of 18–1150°C. The temperature ranges in which intense changes in the structural and phase characteristics of the alloy under study take place have been determined. KW - X-ray diffraction analysis KW - High temperatures KW - Nickel-based superalloys KW - Single crystal KW - Crystal lattice period PY - 2022 U6 - https://doi.org/10.1134/s2075113322010373 SN - 2075-1133 VL - 13 IS - 1 SP - 171 EP - 178 PB - Springer Science + Business Media CY - Dordrecht AN - OPUS4-54466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Malakhov, A. A1 - Epishin, A. A1 - Denisov, I. A1 - Saikov, I. A1 - Nolze, Gert T1 - Morphology and Structure of Brass–Invar Weld Interface after Explosive Welding N2 - This paper presents the results of a study of the morphology and structure at the weld interface in a brass–Invar bimetal, which belongs to the class of so-called thermostatic bimetals, or thermobimetals. The structure of the brass–Invar weld interface was analyzed using optical microscopy and scanning electron microscopy (SEM), with the use of energy-dispersive X-ray (EDX) spectrometry and back-scattered electron diffraction (BSE) to identify the phases. The distribution of the crystallographic orientation of the grains at the weld interface was obtained using an e-Flash HR electron back-scatter diffraction (EBSD) detector and a forward-scatter detector (FSD). The results of the study indicated that the weld interface had the wavy structure typical of explosive welding. The wave crests and troughs showed the presence of melted zones consisting of a disordered Cu–Zn–Fe–Ni solid solution and undissolved Invar particles. The pattern quality map showed that the structure of brass and Invar after explosive welding consisted of grains that were strongly elongated towards the area of the highest intensive plastic flow. In addition, numerous deformation twins, dislocation accumulations and shear bands were observed. Thus, based on the results of this study, the mechanism of Cu–Zn–Fe–Ni structure formation can be proposed. KW - Explosive welding KW - Thermobimetal KW - Grain structure KW - Brass KW - Invar PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-565964 SN - 1996-1944 VL - 15 IS - 23 SP - 1 EP - 10 PB - MDPI AN - OPUS4-56596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. I. A1 - Petrushin, N. V. A1 - Svetlov, I. L. A1 - Nolze, Gert T1 - Model for Forecasting Temperature Dependence of γ/γ' Misfit in Heat-Resistant Nickel Alloys N2 - An analytical model for forecasting the temperature dependence of γ/γ' misfit in heat-resistant nickel alloys is proposed. The model accounts for the concentration dependences of the periods of crystalline lattices of the γ and γ' phases (Vegard law), thermal expansion of the γ and γ' lattices, and dissolution of the γ' phase at high temperatures. Adequacy of calculations of misfit is confirmed by comparison with the results of measurements using methods of X-ray and neutron diffraction. The model is applied for development of a nickel alloy with positive misfit. KW - Heat-resistant nickel alloys KW - Dimensional mismatch of crystalline lattice periods (misfit) KW - Microstructure evolution PY - 2022 U6 - https://doi.org/10.1134/S2075113322010105 SN - 2075-1133 VL - 13 IS - 1 SP - 7 EP - 16 PB - Springer AN - OPUS4-54379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, A. A1 - Nolze, Gert A1 - Cios, G. A1 - Tokarski, T. A1 - Bala, P. A1 - Hourahine, B. A1 - Trager-Cowan, C. T1 - Kikuchi pattern simulations of backscattered and transmitted electrons N2 - We discuss a refined simulation approach which treats Kikuchi diffraction patterns in electron backscatter diffraction (EBSD) and transmission Kikuchi diffraction (TKD). The model considers the result of two combined mechanisms: (a) the dynamical diffraction of electrons emitted coherently from point sources in a crystal and (b) diffraction effects on incoherent diffuse intensity distributions. Using suitable parameter settings, the refined simulation model allows to reproduce various thickness- and energy-dependent features which are observed in experimental Kikuchi diffraction patterns. Excess-deficiency features are treated by the effect of gradients in the incoherent background intensity. Based on the analytical two-beam approximation to dynamical electron diffraction, a phenomenological model of excess-deficiency features is derived, which can be used for pattern matching applications. The model allows to approximate the effect of the incident beam geometry as a correction signal for template patterns which can be reprojected from pre-calculated reference data. As an application, we find that the accuracy of fitted projection centre coordinates in EBSD and TKDcan be affected by changes in the order of 10−3–10-2 if excess-deficiency features are not considered in the theoreticalmodel underlying a best-fit pattern matching approach. Correspondingly, the absolute accuracy of simulation-based EBSD strain determination can suffer frombiases of a similar order of magnitude if excess-deficiency effects are neglected in the simulation model. KW - Electron diffraction KW - EBSD KW - Kikuchi diffraction KW - Pattern matching PY - 2021 U6 - https://doi.org/10.1111/jmi.13051 VL - 284 IS - 2 SP - 157 EP - 184 PB - Wiley Online Library AN - OPUS4-53109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, A. A1 - Nolze, Gert A1 - Cios, G. A1 - Tokarski, T. A1 - Bala, P. A1 - Hourahine, B. A1 - Trager-Cowan, C. T1 - Kikuchi pattern simulations of backscattered and transmitted electrons N2 - We discuss a refined simulation approach which treats Kikuchi diffraction patterns in electron backscatter diffraction (EBSD) and transmission Kikuchi diffraction (TKD). The model considers the result of two combined mechanisms: (a) the dynamical diffraction of electrons emitted coherently from point sources in a crystal and (b) diffraction effects on incoherent diffuse intensity distributions. Using suitable parameter settings, the refined simulation model allows to reproduce various thickness- and energy-dependent features which are observed in experimental Kikuchi diffraction patterns. Excess-deficiency features are treated by the effect of gradients in the incoherent background intensity. Based on the analytical two-beam approximation to dynamical electron diffraction, a phenomenological model of excess-deficiency features is derived, which can be used for pattern matching applications. The model allows to approximate the effect of the incident beam geometry as a correction signal for template patterns which can be reprojected from pre-calculated reference data. As an application, we find that the accuracy of fitted projection centre coordinates in EBSD and TKDcan be affected by changes in the order of 10−3–10−2 if excess-deficiency features are not considered in the theoreticalmodel underlying a best-fit pattern matching approach. Correspondingly, the absolute accuracy of simulation-based EBSD strain determination can suffer frombiases of a similar order of magnitude if excess-deficiency effects are neglected in the simulation model. KW - Electron diffraction KW - EBSD KW - Kikuchi diffraction KW - Pattern matching PY - 2021 U6 - https://doi.org/10.1111/jmi.13051 VL - 284 IS - 2 SP - 157 EP - 184 PB - Wiley Online Library AN - OPUS4-53584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Treninkov, И. A A1 - Petrushin, N. V. A1 - Epishin, А. I. A1 - Svetlov, I. L. A1 - Nolze, Gert A1 - Elyutin, E. S. T1 - ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ СТРУКТУРНО-ФАЗОВЫХ ПАРАМЕТРОВ НИКЕЛЕВОГО ЖАРОПРОЧНОГО СПЛАВА T1 - Experimental determination of temperature dependence of structural-phase parameters of nickel-based superalloy N2 - Методом рентгеноструктурного анализа в интервале температур 18—1150 °С определены температурные зависимости периодов кристаллических решеток γ- и γ'-фаз, их размерно-го несоответствия (мисфит) и объемной доли γ'-фазы экспериментального монокристал-лического жаропрочного никелевого сплава. Определены диапазоны температур, в которых происходят интенсивные изменения структурно-фазовых характеристик исследованного сплава. KW - рентгеноструктурный анализ KW - высокие температуры KW - жаропрочные нике- левые сплавы KW - монокристалл KW - γ- и γ'-фазы, период кристаллической решетки PY - 2021 U6 - https://doi.org/10.31044/1684-579x-2021-0-7-3-12 IS - 7 SP - 3 EP - 12 AN - OPUS4-53110 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tokarski, T. A1 - Nolze, Gert A1 - Winkelmann, A. A1 - Rychlowski, L. A1 - Bala, P. A1 - Cios, G. T1 - Transmission Kikuchi diffraction: The impact of the signal-to-noise ratio N2 - Signal optimization for transmission Kikuchi diffraction (TKD) measurements in the scanning electron microscope is investigated by a comparison of different sample holder designs. An optimized design is presented, which uses a metal shield to efficiently trap the electron beam after transmission through the sample. For comparison, a second holder configuration allows a significant number of the transmitted electrons to scatter back from the surface of the sample holder onto the diffraction camera screen. It is shown that the secondary interaction with the sample holder leads to a significant increase in the background level, as well as to additional noise in the final Kikuchi diffraction signal. The clean TKD signal of the optimized holder design with reduced background scattering makes it possible to use small signal changes in the range of 2% of the camera full dynamic range. As is shown by an analysis of the power spectrum, the signal-to-noise ratio in the processed Kikuchi diffraction patterns is improved by an order of magnitude. As a result, the optimized design allows an increase in pattern signal to noise ratio which may lead to increase in measurement speed and indexing reliability. KW - EBSD KW - SEM KW - Transmission Kikuchi diffraction KW - Sample holder PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-531743 SN - 0304-3991 SN - 1879-2723 VL - 230 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-53174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Camin, B. A1 - Hansen, L. A1 - Chyrkin, A. A1 - Nolze, Gert T1 - Synchrotron Sub-μ X-ray Tomography of Kirkendall Porosity in a Diffusion Couple of Nickel-Base Superalloy and Nickel after Annealing at 1250 °C N2 - Kirkendall porosity that forms during interdiffusion in a diffusion couple of nickel-base superalloy CMSX-10 with pure nickel is investigated. The diffusion experiments are conducted at a temperature of 1250 °C, where the strengthening ƴ'-phase ist partially dissolved. The porosity is studied by X-ray sub-μ tomography with a spatial resolution of about 0.35³ μm³ at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. It is found that depending on the distance from the interface the Kirkendall pores take different shapes: octahedral, rounded pyramidal, drop shaped, dendritic, pear shaped, and joint shapes. Such a variety of pore morphologies indicates a complex multistage process of porosity nucleation and growth under vacancy supersaturation of different degrees. The experimental findings are interpreted on the basis of the results of diffusion modeling. It is shown that the kinetics of porosity growth is essentially influenced by the dissolution of the ƴ'-phase. KW - Diffusion KW - Nickel alloys KW - Porous materials KW - Synchrotron radiations KW - Three-dimensional tomographies PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521476 VL - 23 IS - 4 SP - 1220 PB - Wiley Online Library AN - OPUS4-52147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Petrushin, N. A1 - Gerstein, G. A1 - Maier, J. A1 - Nolze, Gert T1 - Investigation of the gamma'-strengthened quaternary co-based alloys Co-Al-W-Ta N2 - The alloying system Co-Al-W-Ta is comprehensively investigated in the vicinity of the compositional point Co-9Al-10W-2Ta, at. pct. These investigations provided a large amount of quantitative information, which can be used for alloy development, namely, the compositional dependences of the The alloying system Co-Al-W-Ta is comprehensively investigated in the vicinity of the compositional point Co-9Al-10W-2Ta, at. pct. These investigations provided a large amount of quantitative information, which can be used for alloy development, namely, the compositional dependences of the γ‘-solvus, solidus, and liquidus temperatures; fraction of the extrinsic phases after casting; the compositional dependence of the γ/γ‘-lattice misfit; the element partitioning between γ- and γ‘-phases; and the two Phase compositional area γ/γ‘ in the Co-rich part of the Co-Al-W-Ta phase diagram at 900°C. It is shown that additions of Ta elevate the γ‘-solvus temperature and increase the γ/γ‘-lattice misfit, but adding more than about 3 at. pct Ta results in a large amount of undissolvable extrinsic phases. Additionally, two Co-Al-W-Ta alloys with lower content of W were developed and solidified as [001] single crystals for mechanical testing in a temperature range between 20 and 1200°C. These tests included measurement of the Young modulus, tensile tests with constant strain rate, and stress rupture tests. It was found that at temperatures up to about 750°C the ultimate tensile strength of Co-Al-Ta-W alloys can be at the same level or even higher than of Ni-based superalloys. KW - Cobald based alloy KW - Microstructur KW - Segregation PY - 2018 U6 - https://doi.org/10.1007/s11661-018-4756-3 SN - 1543-1940 SN - 1073-5623 VL - 49A IS - 9 SP - 4042 EP - 4057 PB - Springer Sciences & Business Media CY - New York, NY AN - OPUS4-45395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böllinghaus, Thomas A1 - Lüders, V. A1 - Nolze, Gert T1 - Microstructural insights into natural silver wires N2 - Due to the increasing global demand for pure silver, native wire silver aggregates in very high purities are gaining more industrial attention. Up to the present, no substantial metallurgical Investigation of natural wire silver exists in the accessible literature. To convey urgently needed cross-disciplinary fundamental knowledge for geoscientists and metallurgical engineers, twenty natural wire silver specimens from eight different ore deposits have been investigated in detail for the first time by EBSD (Electron Back Scattering Diffraction), supported by light microscopy and micro-probe analyses. The improved understanding of the natural silver wire microstructure provides additional Information regarding the growth of natural silver aggregates in comparison to undesired artificial growth on electronic devices. Clear evidence is provided that natural silver curls and hairs exhibit a polycrystalline face-centered cubic microstructure associated with significant twinning. Although the investigated natural wire silver samples have relatively high purity (Ag > 99.7 wt.-%), they contain a variety of trace elements such as, S, Cu, Mn, Ni, Zn, Co and Bi, As and Sb. Additionally, Vickers micro-hardness measurements are provided for the first time which revealed that natural silver wires and curls are softer than it might be expected from conversion of the general Mohs hardness of 2.7. KW - Natural silver wires PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-451655 UR - http://www.nature.com/articles/s41598-018-27159-w SN - 2045-2322 VL - 8 IS - 1 SP - Article 9053, 1 EP - 9 PB - nature publishing group CY - London, United Kingdom AN - OPUS4-45165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epishin, A. A1 - Chyrkin, A. A1 - Nolze, Gert A1 - Midtlyng, Jan A1 - Mayer, H. M. A1 - Petrushin, N. A1 - Reimers, W. T1 - Interdiffusion in the Face-Centered Cubic Phase of the Co-Al-W-Ta System Between 1090 and 1240 °C N2 - Interdiffusion of Al, W, Ta and Co in a Co-base alloy at temperatures between 1090 and 1240 °C has been investigated. The interdiffusion coefficients were found to be close to those reported for these elements in Ni-base alloys. Combining the diffusion simulation software DICTRA with the Ni-base diffusion databases TCNi5 and MobNi3, the interdiffusion profiles of Co, Al W, and Ta were modeled for Co9Al8W2Ta/Co diffusion couples annealed at different temperatures and for different times. The results show that interdiffusion in the Co-Al-W-Ta alloys can be modeled reasonably well using the available commercial databases for thermodynamics and kinetics of Ni-base systems. KW - Alloys KW - Interdiffusion KW - Modeling PY - 2018 U6 - https://doi.org/10.1007/s11669-018-0620-9 VL - 39 IS - 2 SP - 176 EP - 185 PB - Springer AN - OPUS4-44463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Wilbig, Janka A1 - Mohr, Gunther A1 - Villatte, T. A1 - Léonard, Fabien A1 - Nolze, Gert A1 - Sparenberg, M. A1 - Melcher, J. A1 - Hilgenberg, Kai A1 - Günster, Jens T1 - Enabling the 3D Printing of Metal Components in μ-Gravity N2 - As humanity contemplates manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments to safely work in space for years. The supply of spare parts for repair and replacement of lost equipment will be one key need, but in-space manufacturing remains the only option for a timely supply. With high flexibility in design and the ability to manufacture ready-to-use components directly from a computeraided model, additive manufacturing (AM) technologies appear extremely attractive. For the manufacturing of metal parts, laser-beam melting is the most widely used AM process. However, the handling of metal powders in the absence of gravity is one prerequisite for its successful application in space. A gas flow throughout the powder bed is successfully applied to compensate for missing gravitational forces in microgravity experiments. This so-called gas-flow-assisted powder deposition is based on a porous Building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. KW - Additive manufacturing KW - µ-gravity KW - Laser beam melting KW - Parabolic flight KW - 3D printing PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-492190 SP - 1900506 PB - WILEY-VCH Verlag GmbH AN - OPUS4-49219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Nolze, Gert A1 - Roohbakhshan, Farshad A1 - Fedelich, Bernard A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Cyclic operation performance of 9-12% Cr ferritic-martensitic steels part 2: Microstructural evolution during cyclic loading and its representation in a physically-based micromechanical model N2 - The current competitive situation on electricity markets forces conventional power plants into cyclic operation regimes with frequent load shifts and starts/shutdowns. In the present work, the cyclic mechanical behavior of ferritic-martensitic 9-12 % Cr steels under isothermal and thermomechanical loading was investigated for the example of grade P92 material. A continuous softening was observed under all loading conditions. The introduction of hold periods to the applied cycles reduced material lifetime, with most prominent effects at technologically relevant small strain levels. The microstructural characterization reveals a coarsening of the original “martensitic” lath-type microstructure to a structure with polygonal subgrains and reduced dislocation density. The microstructural data forms the input for a physically-based modelling approach. T2 - 45. MPA-Seminar CY - Leinfelden-Echterdingen, Germany DA - 01.10.2019 KW - Tempered Martensite Ferritic Steels KW - P92 KW - TEM KW - EBSD KW - Micromechanical model PY - 2019 SP - 80 EP - 85 PB - MPA (Materialprüfungsanstalt Universität Stuttgart) CY - Stuttgart AN - OPUS4-50052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Winkelmann, A. A1 - Britton, T. B. A1 - Nolze, Gert T1 - EBSD Kikuchi Pattern Analysis, Silicon 15kV N2 - Supplementary data and images for Si EBSD pattern analysis as presented in: A. Winkelmann, T.B. Britton, G. Nolze "Constraints on the effective electron energy spectrum in backscatter Kikuchi diffraction", Physical Review B (2019). KW - EBSD KW - Electron energy KW - Energy distribution KW - Kikuchi pattern KW - Simulation PY - 2019 U6 - https://doi.org/10.5281/zenodo.2565061 PB - Zenodo CY - Geneva AN - OPUS4-51907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Tokarski, T. A1 - Rychlowski, L. T1 - Use of electron backscatter diffraction patterns to determine the crystal lattice. Part 3. Pseudosymmetry N2 - A pseudosymmetric description of the crystal lattice derived from a single wideangle Kikuchi pattern can have several causes. The small size (<15%) of the sector covered by an electron backscatter diffraction pattern, the limited precision of the projection centre position and the Kikuchi band definition are crucial. Inherent pseudosymmetries of the crystal lattice and/or structure also pose a challenge in the analysis of Kikuchi patterns. To eliminate experimental errors as much as possible, simulated Kikuchi patterns of 350 phases have been analysed using the software CALM [Nolze et al. (2021). J. Appl. Cryst. 54, 1012–1022] in order to estimate the frequency of and reasons for pseudosymmetric crystal lattice descriptions. Misinterpretations occur in particular when the atomic scattering factors of non-equivalent positions are too similar and reciprocal-lattice points are systematically missing. As an example, a pseudosymmetry prediction depending on the elements involved is discussed for binary AB compounds with B1 and B2 structure types. However, since this is impossible for more complicated phases, this approach cannot be directly applied to compounds of arbitrary composition and structure. KW - Bravais lattices KW - Pseudosymmetry KW - Lattice point density KW - Ordered/disordered structures KW - Lattice distortion PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-573169 SN - 0021-8898 VL - 56 IS - Pt. 2 SP - 367 EP - 380 AN - OPUS4-57316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cios, G. A1 - Winkelmann, A. A1 - Nolze, Gert A1 - Tokarski, T. A1 - Rychlowski, L. A1 - Dan, L. A1 - Bala, P. T1 - Mapping of lattice distortion in martensitic steel—Comparison of different evaluation methods of EBSD patterns N2 - To visualize the varying tetragonal distortions in high carbon martensitic steels by EBSD, two different approaches have been applied on backscattered Kikuchi diffraction (BKD) patterns. A band-edge refinement technique called Refined Accuracy (RA) (Oxford Instruments) is compared with a technique called Pattern Matching (PM), which optimizes the fit to a simulated BKD signal. RA distinguishes between hypothetical phases of different fixed 𝑐∕𝑎, while PM determines a best fitting continuous 𝑐∕𝑎 by projective transformation of a master pattern. Both techniques require stored BKD patterns. The sensitivity of the 𝑐∕𝑎-determination was tested by investigating the microstructure of a ferritic steel with an expected 𝑐∕𝑎 = 1. The influence of the Kikuchi pattern noise on 𝑐∕𝑎 was compared for a single or 40 averaged frames per measuring point, and turned out to be not significant. The application of RA and PM on the martensitic microstructure delivered qualitatively similar maps of 𝑐∕𝑎. The comparison of RA and PM shows that RA is suitably fast and precise during mapping the martensite 𝑐∕𝑎 ratio in analyses of high carbon martensite, especially for fast initial surveys. As RA leads quantitatively to higher noise in 𝑐∕𝑎, the PM analysis can be used for higher precision results. KW - EBSD KW - Steel KW - Martensite KW - Tetragonality KW - Strain PY - 2023 U6 - https://doi.org/10.1016/j.ultramic.2023.113824 VL - 253 SP - 1 EP - 11 AN - OPUS4-58158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Tokarski, T. A1 - Rychlowski, L. T1 - Use of electron backscatter diffraction patterns to determine the crystal lattice. Part 1. Where is the Bragg angle? N2 - The derivation of a crystal structure and its phase-specific parameters from a single wide-angle backscattered Kikuchi diffraction pattern requires reliable extraction of the Bragg angles. By means of the first derivative of the lattice profile, an attempt is made to determine fully automatically and reproducibly the band widths in simulated Kikuchi patterns. Even under such ideal conditions (projection centre, wavelength and lattice plane traces are perfectly known), this leads to a lattice parameter distribution whose mean shows a linear offset that correlates with the mean atomic number Z of the pattern-forming phase. The consideration of as many Kikuchi bands as possible reduces the errors that typically occur if only a single band is analysed. On the other hand, the width of the resulting distribution is such that higher image resolution of diffraction patterns, employing longer wavelengths to produce wider bands or the use of higher interference orders is less advantageous than commonly assumed. KW - Bragg angles KW - Kikuchi bands KW - Kikuchi patterns KW - First derivative KW - Lattice parameters PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-573141 SN - 0021-8898 VL - 56 IS - Pt. 2 SP - 349 EP - 360 AN - OPUS4-57314 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Tokarski, T. A1 - Rychlowski, L. T1 - Use of electron backscatter diffraction patterns to determine the crystal lattice. Part 2. Offset corrections N2 - A band width determination using the first derivative of the band profile systematically underestimates the true Bragg angle. Corrections are proposed to compensate for the resulting offset Δa/a of the mean lattice parameters derived from as many Kikuchi band widths as possible. For dynamically simulated Kikuchi patterns, Δa/a can reach up to 8% for phases with a high mean atomic number Z, whereas for much more common low-Z materials the offset decreases linearly. A predicted offset Δa/a = f(Z) is therefore proposed, which also includes the unit-cell volume and thus takes into account the packing density of the scatterers in the material. Since Z is not always available for unknown phases, its substitution by Zmax, i.e. the atomic number of the heaviest element in the compound, is still acceptable for an approximate correction. For simulated Kikuchi patterns the offset-corrected lattice parameter deviation is Δa/a < 1.5%. The lattice parameter ratios, and the angles α, β and γ between the basis vectors, are not affected at all.1.5%. The lattice parameter ratios, and the angles � , � and � between the basis vectors, are not affected at all. KW - Mean atomic number KW - Kikuchi patterns KW - Lattice parameters KW - Automated Bragg angle determination KW - Lattice parameter determination PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-573153 SN - 0021-8898 VL - 56 IS - Pt. 2 SP - 361 EP - 366 AN - OPUS4-57315 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Heide, K. T1 - Roaldite in the iron-meteorite São Julião de Moreira N2 - Roaldite – Fe4N – has been identified in the São Julião de Moreira iron meteorite using electron backscatter diffraction (EBSD) and simultaneously acquired energy-dispersive x-ray spectroscopy (EDS). Mean-periodic-number images derived from raw EBSD patterns confirm this phase by an even higher spatial resolution compared to EDS. Roaldite appears in the form of systematically and repetitively aligned plates. Despite the locally heavy plastic deformation, it is shown that the origin of the oriented precipitation of roaldite is linked to the orientation of the kamacite matrix. Roaldite can be considered to be precipitated from kamacite using an inverse Kurdjumov-Sachs (K-S) or Nishiyama-Wassermann (N-W) orientation relationship. A more accurate discrimination is impossible due to the accumulated shock deformation, which blurs the local reference orientation of kamacite. The habit plane of roaldite is found to be {112}R, which is most likely parallel to {120}K of kamacite. Some of the roaldite plates contain two orientation variants which repeatedly alternate. Their misorientation angle is about 12°. KW - Plastic deformation KW - Iron meteorite KW - Corrosion KW - Nitride KW - Orientation relationship PY - 2019 U6 - https://doi.org/10.1016/j.chemer.2019.125538 VL - 79 IS - 4 SP - 125538 PB - Elsevier AN - OPUS4-50338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Winkelmann, A. T1 - About the reliability of EBSD measurements: Data enhancement N2 - An extensive set of information about the diffracting volume is carried by EBSD patterns: the crystal lattice, the reciprocal lattice, the crystal structure, the crystal symmetry, the mean periodic number of the diffracting phase, the source point from where it has been projected (projection centre), the crystal orientation, the sample topography (local tilt), the (preparation) quality of defect density of the crystal, and possible pattern overlaps. Some of this information is used regularly in conventional EBSD analyses software while others are still waiting for a more widespread application. Despite the wealth of information available, the accuracy and precision of the data that are presently extracted from conventional EBSD patterns are often well below the actual physical limits. Using a selection of example applications, we will demonstrate the gain in angular resolution possible using relatively low-resolution patterns of approximately 20k pixels in combination with pattern matching (PM) approaches. In this way, fine details in a microstructure can be revealed which would otherwise be hidden in the orientation noise. KW - EBSD KW - Orientation precision KW - Disorientation KW - Grain boundary KW - Phase transformation PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521618 VL - 891 SP - 012018 PB - IOP Science AN - OPUS4-52161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Winkelmann, A. A1 - Cios, G. A1 - Tokarski, T. T1 - Tetragonality mapping of martensite in high-carbon steel by EBSD N2 - The locally varying tetragonality in martensite grains of a high-carbon steel (1.2 mass percent C) was resolved by electron backscatter diffraction (EBSD) with a spatial resolution in the order of 100 nm. Compared to spatially integrating X-ray diffraction, which yielded an average tetragonality fo c/a=1.05, the EBSD measurements in the scanning electron microscope allowed to image a local variation of the lattice papameter ration c/a in the range of 1.02 ≤ c/a ≤ 1.07. The local variation of tetragonality is confirmed by two different EBSD data analysis approaches based on the fitting of simulated to experimental EBSD patterns. The resulting EBSD-based tetragonality maps are pointing to a complex interaction of carbon concentration and local lattice distortions during the formation process of martensitic structures. KW - EBSD KW - Martensite KW - Tetragonal distortion KW - Pattern matching PY - 2021 U6 - https://doi.org/10.1016/j.matchar.2021.111040 VL - 175 SP - 111040 PB - Elsevier Inc. AN - OPUS4-52343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, A. A1 - Nolze, Gert A1 - Cios, G. A1 - Tokarski, T. T1 - Mapping of local lattice parameter ratios by projective Kikuchi pattern matching N2 - We describe a lattice-based crystallographic approximation for the analysis of distorted crystal structures via Electron Backscatter Diffraction (EBSD) in the scanning electron microscope. EBSD patterns are closely linked to local lattice parameter ratios via Kikuchi bands that indicate geometrical lattice plane projections. Based on the transformation properties of points and lines in the real projective plane, we can obtain continuous estimations of the local lattice distortion based on projectively transformed Kikuchi diffraction simulations for a reference structure. By quantitative image matching to a projective transformation model of the lattice distortion in the full solid angle of possible scattering directions, we enforce a crystallographically consistent approximation in the fitting procedure of distorted simulations to the experimentally observed diffraction patterns. As an application example, we map the locally varying tetragonality in martensite grains of steel. KW - EBSD KW - Scanning electron microscopy KW - Orientation refinement PY - 2018 U6 - https://doi.org/10.1103/PhysRevMaterials.2.123803 SN - 2475-9953 VL - 2 IS - 12 SP - 123803, 1 EP - 15 PB - American Physical Society CY - College Park, MD AN - OPUS4-47296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Tokarski, T. A1 - Rychlowski, L. A1 - Cios, G. A1 - Winkelmann, A. T1 - Crystallographic analysis of the lattice metric (CALM) from single electron backscatter diffraction or transmission Kikuchi diffraction patterns N2 - A new software is presented for the determination of crystal lattice parameters from the positions and widths of Kikuchi bands in a diffraction pattern. Starting with a single wide-angle Kikuchi pattern of arbitrary resolution and unknown phase, the traces of all visibly diffracting lattice planes are manually derived from four initial Kikuchi band traces via an intuitive graphical user interface. A single Kikuchi bandwidth is then used as reference to scale all reciprocal lattice point distances. Kikuchi band detection, via a filtered Funk transformation, and simultaneous display of the band intensity profile helps users to select band positions and widths. Bandwidths are calculated using the first derivative of the band profiles as excess-deficiency effects have minimal influence. From the reciprocal lattice, the metrics of possible Bravais lattice types are derived for all crystal systems. The measured lattice parameters achieve a precision of <1%, even for good quality Kikuchi diffraction patterns of 400 x 300 pixels. This band-edge detection approach has been validated on several hundred experimental diffraction patterns from phases of different symmetries and random orientations. It produces a systematic lattice parameter offset of up to ±4%, which appears to scale with the mean atomic number or the backscatter coefficient. KW - Electron backscatter diffraction KW - Kikuchi patterns KW - Lattice parameters KW - Radon transform PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-527076 SN - 1600-5767 VL - 54 IS - Pt 3 SP - 1012 EP - 1022 AN - OPUS4-52707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cios, G. A1 - Nolze, Gert A1 - Winkelmann, A. A1 - Tokarski, T. A1 - Hielscher, R. A1 - Strzalka, R. A1 - Buganski, I. A1 - Wolny, J. A1 - Bala, P. T1 - Approximant-based orientation determination of quasicrystals using electron backscatter diffraction N2 - Orientation mapping of quasicrystalline materials is demonstrated using crystalline approximant structures in the technique of electron backscatter diffraction (EBSD). The approximant-based orientations are symmetrised according to the rotational point group of the quasicrystal, including the visualization of orientation maps using proper colour keys for quasicrystal symmetries. Alternatively, approximant-based orientation data can also be treated using pseudosymmetry post-processing options in the EBSD system software, which enables basic grain size estimations. Approximant-based orientation analyses are demonstrated for icosahedral and decagonal quasicrystals. KW - EBSD KW - Quasicrystal KW - Approximant KW - Chrystal orientation KW - Data processing PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-514221 VL - 218 SP - 113093 PB - Elsevier B.V. AN - OPUS4-51422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stephan-Scherb, Christiane A1 - Menneken, Martina A1 - Weber, Kathrin A1 - Agudo Jácome, Leonardo A1 - Nolze, Gert T1 - Elucidation of orientation relations between Fe-Cr alloys and corrosionproducts after high temperature SO2 corrosion N2 - The early stages of corrosion of Fe-Cr-model alloys (2 and 9 % Cr) were investigated after exposure at 650 °C in0.5 % SO2containing gas by electron backscattered diffraction (EBSD) and transmission electron microscopy(TEM). The impact of the grain orientation of the base alloy on the orientation relations of the corrosion productsis presented. After 2 min–5 min exposure the formation of a multi-layered corrosion zone was discovered. Aclear orientation relationship between ferrite and the (Fe,Cr)3O4 spinel could be demonstrated. The obtainedresults show the importance of the grain orientation on oxidation resistance. KW - Iron KW - TEM KW - SEM KW - High temperature corrosion PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-508911 VL - 174 SP - 1 EP - 11 PB - Elsevier AN - OPUS4-50891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Jürgens, Maria A1 - Olbricht, Jürgen A1 - Winkelmann, Aimo T1 - Improving the precision of orientation measurements from technical materials via EBSD pattern matching N2 - We use pattern matching of experimental and dynamically simulated backscattered Kikuchi diffraction (BKD) patterns to increase the orientation precision of electron backscatter diffraction (EBSD) measurements. In order to quantify the improvement in orientation precision, we analyze the experimental distribution of the kernel average misorientation (KAM) angles. We find that for the same raw data, i.e. the same EBSD data acquisition time budget, the pattern matching approach improves the KAM resolution by an order of magnitude compared to orientation data delivered from the conventional Hough-transform based data analysis. This quantitative improvement enables us to interpret small orientation changes in plastically deformed materials which are hidden in noisy orientation data delivered from the reference EBSD system. As an application example, we analyze a ferritic-martensitic steel (P92) sample before and after low-cycle fatigue (LCF) loading (±0.3% strain) at 620 °C. Whereas the low precision of the EBSD orientation data from the manufacturer software does not allow a reliable discrimination of the gradually changing microstructure, we find very clear systematic differences of the local microstructure after the pattern matching orientation refinement of the initial, raw pattern data. For the investigated P92 sample, the KAM-angle histograms are well described by two log-normal distributions indicating the already tempered and the remaining and mostly untempered martensite. KW - Misorientation KW - Thermo-mechanical loading KW - Martensite KW - Log-normal distribution KW - Bimodal distribution PY - 2018 U6 - https://doi.org/10.1016/j.actamat.2018.08.028 VL - 159 SP - 408 EP - 415 PB - Elsevier Ltd. AN - OPUS4-46454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Han, M. A1 - Chen, C. A1 - Zhao, G. A1 - Li, L. A1 - Yo, B. A1 - Huang, X. A1 - Zhu, Y. T1 - Blind lattice-parameter determination of cubic and tetragonal phases with high accuracy using a single EBSD pattern N2 - The Bravais lattices and their lattice parameters are blindly determined using electron backscatter diffraction (EBSD) patterns of materials with cubic or tetragonal crystal structures. Since the geometric relationships in a single EBSD pattern are overdetermined, the relative errors of determining the lattice parameters as well as the axial ratios are confined to about 0.7 ± 0.4% and 0.07 ± 0.03%, respectively, for ideal simulated EBSD patterns. The accuracy of the crystal orientation determination reaches about 0.06 ± 0.03°. With careful manual band detection, the accuracy of determining lattice parameters from experimental patterns can be as good as from simulated patterns, although the results from simulated patterns are often better than expermental patterns, which are lower quality and contain uncertain systematic errors. The reasonably high accuracy is obtained primarily because the detection of the diffracting-plane traces and zone axes is relatively accurate. The results here demonstrate that the developed procedure based on the EBSD technique presents a reliable tool for crystallographic characterization of the Bravais lattices of unknown phases. KW - EBSD KW - Bravais lattice KW - Lattice parameters KW - Kikuchi pattern PY - 2018 U6 - https://doi.org/10.1107/S2053273318010963 SN - 2053-2733 VL - 74 IS - 6 SP - 630 EP - 639 PB - International Union of Crystallography AN - OPUS4-46455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reith, F. A1 - Rea, M.A.D. A1 - Sawley, P. A1 - Zammit, C.M. A1 - Nolze, Gert A1 - Reith, T. A1 - Rantanen, K. A1 - Bissett, A. T1 - Biogeochemical cycling of gold: Transforming gold particles from arctic Finland N2 - (Bio)geochemical cycling of gold (Au) has been demonstrated in present-day (semi)-arid, (sub)-tropical and temperate environment. Hereby biofilms on Au-bearing mineral- and Au-particle surfaces drive Au dispersion and reconcentration, thereby (trans)forming the particles. However, it is unknown if biogeochemical cycling of Au occurs in polar environments, where air temperatures can reach −40 °C and soils remain frozen for much of the year. Therefore, placer Au-particles, soils and waters were collected at two placer mining districts in arctic Finland, i.e., the Ivalojoki and Lemmenjoki goldfields. Sites were chosen based on contrasting settings ((glacio)-fluvial vs. glacial-till deposits) and depths (surface to 5m below current surface). Gold particles were studied using a combination of tagged 16S rRNA gene next generation sequencing and electron microscopic/microanalytical techniques. Across all sites a range of Au-particle morphologies were observed, including morphotypes indicative of Au dissolution and aggregation. Elevated Au concentrations indicative of Au mobility were detected in placer particle bearing soils at both districts. Typically Au-particles were coated by polymorphic biofilm layers composed of living and dead cells embedded in extracellular polymeric substances. Intermixed were biominerals, clays and iron-sulfides/oxides and abundant secondary Au morphotypes, i.e., nano-particles, microcrystals, sheet-like Au, branched Au networks and overgrowths and secondary rims. Biofilms communities were composed of Acidobacteria (18.3%), Bacteroidetes (15.1%) and Proteobacteria (47.1%), with β-Proteobacteria (19.5%) being the most abundant proteobacterial group. Functionally, biofilms were composed of taxa contributing to biofilm establishment, exopolymer production and nutrient cycling, abundant taxa capable of Au mobilization, detoxification and biomineralization, among them Cupriavidus metallidurans, Acinetobacter spp. and Pseudomonas spp., were detected. In conclusion, these results demonstrate that placer Au-particle transformation and Au dispersion occur in cold, arctic environments. This corroborates the existence of biogeochemical Au cycling in present-day cold environments. KW - Gold KW - Bacteria KW - Biogeochemistry KW - Mobility KW - Finland KW - Cupriavidus metallidurans KW - NGS PY - 2018 U6 - https://doi.org/10.1016/j.chemgeo.2018.03.021 SN - 0009-2541 VL - 483 SP - 511 EP - 529 PB - Elsevier AN - OPUS4-44805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - The residual stress in as‑built Laser Powder Bed Fusion IN718 alloy as a consequence of the scanning strategy induced microstructure N2 - The effect of two types of scanning strategies on the grain structure and build-up of Residual Stress (RS) has been investigated in an as-built IN718 alloy produced by Laser Powder Bed Fusion (LPBF). The RS state has been investigated by X-ray diffraction techniques. The microstructural characterization was performed principally by Electron Backscatter Diffraction (EBSD), where the application of a post-measurement refinement technique enables small misorientations (< 2°) to be resolved. Kernel average misorientation (KAM) distributions indicate that preferably oriented columnar grains contain higher levels of misorientation, when compared to elongated grains with lower texture. The KAM distributions combined with X-ray diffraction stress maps infer that the increased misorientation is induced via plastic deformation driven by the thermal stresses, acting to self-relieve stress. The possibility of obtaining lower RS states in the build direction as a consequence of the influence of the microstructure should be considered when envisaging scanning strategies aimed at the mitigation of RS. KW - Additive manufacturing KW - LPBF KW - Residual stress KW - Inconel 718 KW - Kernel average misorientation KW - Texture PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-511769 VL - 10 IS - 1 SP - 14645 AN - OPUS4-51176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, A. A1 - Nolze, Gert A1 - Cios, G. A1 - Tokarski, T. A1 - Bala, P. T1 - Refined Calibration Model for Improving the Orientation Precision of Electron Backscatter Diffraction Maps N2 - For the precise determination of orientations in polycrystalline materials, electron backscatter diffraction (EBSD) requires a consistent calibration of the diffraction geometry in the scanning electron microscope (SEM). In the present paper, the variation of the projection center for the Kikuchi diffraction patterns which are measured by EBSD is calibrated using a projective transformation model for the SEM beam scan positions on the sample. Based on a full pattern matching approach between simulated and experimental Kikuchi patterns, individual projection center estimates are determined on a subgrid of the EBSD map, from which least-square fits to affine and projective transformations can be obtained. Reference measurements on single-crystalline silicon are used to quantify the orientation errors which result from different calibration models for the variation of the projection center. KW - Scanning electron microscopy KW - Electron backscatter diffraction KW - Kikuchi diffraction KW - Projection center KW - Orientation precision PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-509342 VL - 13 IS - 12 SP - 2816 PB - MDPI AN - OPUS4-50934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Reith, F. A1 - Etschmann, B. A1 - Kilburn, M. R. A1 - Brugger, J. T1 - Unravelling the formation histories of placer gold and platinum-group mineral particles from Corrego Bom Successo, Brazil: A window into noble metal cycling N2 - Gold and platinum-group-metals (PGM) are cycled through Earth's environments by interwoven geological, physical, chemical and biological processes leading to the trans/neoformation of metallic particles in placers. The placer deposit at Corrego Bom Successo (CBS, Brazil) is one of the few localities worldwide containing secondary gold- and PGM-particles. Placer gold consists of detrital particles from nearby hydrothermal deposits that were transformed in the surface environment. Processes that have affected these particles include shortdistance transport, chemical de-alloying of the primary Gold silver, and (bio)geochemical dissolution/reprecipitation of Gold leading to the formation of pure, secondary gold and the Dispersion of gold nanoparticles. The latter processes are likely mediated by non-living organic matter (OM) and bacterial biofilms residing on the particles. The biofilms are largely composed of metallophillic β- and γ-Proteobacteria. Abundant mobile gold and platinum nanoparticles were detected in surface waters, suggesting similar mobilities of these metals. Earlier hydrothermal processes have led to the formation of coarsely-crystalline, arborescent dendritic potarite (PdHg). On potarite surfaces, biogeochemical processes have then led to the formation of platinum- and palladium-rich micro-crystalline layers, which make up the botryoidal platinum palladium aggregates. Subsequently potarite was dissolved from the core of many aggregates leaving voids now often filled by secondary anatase (TiO2) containing biophilic elements. The presence of fungal structures associated with the anatase suggests that fungi may have contributed to ist formation. For the first time a primary magmatic PGM-particle comprising a mono-crystalline platinum palladium-alloy with platinum iridium osmium inclusions was described from this locality, finally defining a possible primary source for the PGM mineralisation. In conclusion, the formation of modern-day placer gold- and PGM-particles at CBS began 100s ofmillions of years ago bymagmatic and hydrothermal processes. These provided the metal sources for more recent biogeochemical cycling of PGEs and gold that led to the trans/neoformation of gold- and PGM-particles. KW - Gold KW - Platinum-group-metals KW - Biogeochemical cycling KW - Magmatic and hydrothermal processes KW - Biomineralisation PY - 2019 U6 - https://doi.org/10.1016/j.gr.2019.07.003 SN - 1342-937X VL - 76 SP - 246 EP - 259 PB - Elsevier AN - OPUS4-48657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Winkelmann, A. A1 - Cios, G. A1 - Tokarski, T. A1 - Nolze, Gert A1 - Hielscher, R. A1 - Koziel, T. T1 - EBSD orientation analysis based on experimental Kikuchi reference patterns N2 - Orientation determination does not necessarily require complete knowledge of the local atomic arrangement in a crystalline phase. We present a method for microstructural phase discrimination and orientation analysis of phases for which there is only limited crystallographic information available. In this method, experimental Kikuchi diffraction patterns are utilized to generate a self-consistent master reference for use in the technique of Electron Backscatter Diffraction (EBSD). The experimentally derived master data serves as an application-specific reference in EBSD pattern matching approaches. As application examples, we map the locally varying orientations in samples of icosahedral quasicrystals observed in a Ti40Zr40Ni20 alloy, and we analyse AlNiCo decagonal quasicrystals. KW - EBSD KW - Quasicrystal KW - Crystal orientation KW - Pattern matching PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-507611 VL - 188 SP - 376 EP - 385 PB - Elsevier Ltd. AN - OPUS4-50761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Tokarski, T. A1 - Cios, G. A1 - Winkelmann, A. T1 - Manual measurement of angles in backscattered and transmission Kikuchi diffraction patterns N2 - A historical tool for crystallographic analysis is provided by the Hilton net, which can be used for manually surveying the crystal lattice as it is manifested by the Kikuchi bands in a gnomonic projection. For a quantitative analysis using the Hilton net, the projection centre as the relative position of the signal source with respect to the detector plane needs to be known. Interplanar angles are accessible with a precision and accuracy which is estimated to be ≤0.3o. Angles between any directions, e.g. zone axes, are directly readable. Finally, for the rare case of an unknown projection-centre position, its determination is demonstrated by adapting an old approach developed for photogrammetric applications. It requires the indexing of four zone axes [uvw]i in a backscattered Kikuchi diffraction pattern of a known phase collected under comparable geometric conditions. KW - Electron backscatter diffraction KW - EBSD KW - Angle measurement KW - Gnomonic projections KW - Kikuchi patterns PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-507625 VL - 53 SP - 435 EP - 443 AN - OPUS4-50762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Winkelmann, A. A1 - Britton, T. B. T1 - Constraints on the effective electron energy spectrum in backscatter Kikuchi diffraction N2 - Electron backscatter diffraction (EBSD) is a technique to obtain microcrystallographic information from materials by collecting large-angle Kikuchi patterns in the scanning electron microscope (SEM). An important fundamental question concerns the scattering-angle dependent electron energy distribution, which is relevant for the formation of the Kikuchi diffraction patterns. Here we review the existing experimental data and explore the effective energy spectrum that is operative in the generation of backscatter Kikuchi patterns from silicon. We use a full pattern comparison of experimental data with dynamical electron diffraction simulations. Our energy-dependent cross-correlation based pattern matching approach establishes improved constraints on the effective Kikuchi pattern energy spectrum, which is relevant for high-resolution EBSD pattern simulations and their applications. KW - EBSD KW - Kikuchi pattern KW - Simulation KW - Energy distribution KW - Electron energy PY - 2019 SN - 2469-9950 SN - 2469-9969 VL - 99 IS - 6 SP - 064115-1 EP - 064115-13 PB - AIP AN - OPUS4-47635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrushin, N. V. A1 - Epishin, A. I. A1 - Svetlov, I. L. A1 - Nolze, Gert A1 - Elyutin, E. S. A1 - Solov'ev, A. E. T1 - Influence of the Sign of the γ/γ' Misfit on the Structure and Creep Strength of Single Crystals of Nickel-Based Superalloys N2 - Using the method of directional solidification, single crystals of experimental nickel-based superalloys with negative, zero, and positive γ/γ' misfits are obtained. The γ' solvus, solidus, and liquidus temperatures of the alloys are determined, and the microstructures of the alloys after directional solidification, heat treatment, and creep tests are investigated. Creep tests are performed at temperatures of 800 and 1000°C. It is found that single crystals of the alloy with a negative γ/γ' misfit have the highest creep resistance and lifetime (the crystal lattice period of the γ' phase is smaller than that of the γ matrix). KW - Nickel-based superalloys KW - Single crystal KW - Creep KW - Creep strength KW - Microstructure, γ/γ' misfit PY - 2023 U6 - https://doi.org/10.1134/s207511332301029x SN - 2075-1133 VL - 14 IS - 1 SP - 13 EP - 22 AN - OPUS4-59505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert A1 - Tokarski, T. T1 - Lattice parameter determination with EBSD. Is that possible? N2 - CALM is software for determining the Bravais lattice type and the resulting lattice parameters from a single Kikuchi pattern. It requires the definition of 4 bands and a single bandwidth from which all other band positions as well as bandwidths are derived. For band detection, it uses the Funk transform, which allows detection of twice as many bands as usual. CALM works for any symmetry and requires low-noise patterns of at least 320x240 pixels. The resulting errors are <2% even for such small patterns, assuming good quality. The relative errors are <0.5%. However, this requires a projection centre position best derived from a sample of a cubic phase in CALM. However, this must have been recorded under identical conditions. Hundreds of Kikuchi patterns of phases with different symmetries were examined. T2 - Institutskolloquium Kassel CY - Online meeting DA - 30.10.2020 KW - Phasenidentifikation KW - EBSD KW - Gitterkonstanten PY - 2020 AN - OPUS4-51813 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert A1 - Tokarski, T. T1 - CALM down: Identifying unknown phases N2 - CALM is software for determining the Bravais lattice type and the resulting lattice parameters from a single Kikuchi pattern. It requires the definition of 4 bands and a single bandwidth from which all other band positions as well as bandwidths are derived. For band detection, it uses the Funk transform, which allows detection of twice as many bands as usual. CALM works for any symmetry and requires low-noise patterns of at least 320x240 pixels. The resulting errors are <2% even for such small patterns, assuming good quality. The relative errors are <0.5%. However, this requires a projection centre position best derived from a sample of a cubic phase in CALM. However, this must have been recorded under identical conditions. Hundreds of Kikuchi patterns of phases with different symmetries were examined. T2 - Chemnitz MTEX Workshop 2021 CY - Online meeting DA - 08.03.2021 KW - EBSD KW - Gitterkonstanten KW - Phasenidentifikation PY - 2021 AN - OPUS4-52345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - Use of time-of-flight secondary ion mass spectrometry for the investigation of hydrogen-induced effects in austenitic steel AISI 304L N2 - During the energy transformation from fossil fuels to renewable energy sources, the use of hydrogen as fuel and energy storage can play a key role. This presents new challenges to industry and the scientific community alike. The storage and transport of hydrogen, which is nowadays mainly realized by austenitic stainless steels, remains problematic, which is due to the degradation of mechanical properties and the possibility of phase transformation by hydrogen diffusion and accumulation. The development of materials and technologies requires a fundamental understanding of these degradation processes. Therefore, studying the behavior of hydrogen in austenitic steel contributes to an understanding of the damage processes, which is crucial for both life assessment and safe use of components in industry and transportation. As one of the few tools that is capable of depicting the distribution of hydrogen in steels, time-of-flight secondary ion mass spectrometry was conducted after electrochemical charging. To obtain further information about the structural composition and cracking behavior, electron-backscattered diffraction and scanning electron microscopy were performed. Gathered data of chemical composition and topography were treated employing data fusion, thus creating a comprehensive portrait of hydrogen-induced effects in the austenite grade AISI 304L. Specimens were electrochemically charged with deuterium instead of hydrogen. This arises from the difficulties to distinguish between artificially charged hydrogen and traces existing in the material or the rest gas in the analysis chamber. Similar diffusion and permeation behavior, as well as solubility, allow nonetheless to draw conclusions from the experiments. T2 - 21st International Conference on Secondary Ion Mass Spectrometry CY - Kraków, Poland DA - 10.09.2017 KW - AISI 304L KW - Hydrogen KW - ToF-SIMS KW - Austenitic stainless steel PY - 2018 U6 - https://doi.org/10.1116/1.5013931 SN - 1071-1023 VL - 36 IS - 3 SP - Article 03F103, 1 EP - 6 PB - American Vacuum Society (AVS) AN - OPUS4-44840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -