TY - JOUR A1 - Lamoriniere, S. A1 - Mitchell, P. J. A1 - Ho, K. A1 - Kalinka, Gerhard A1 - Shaffer, M. S. P. A1 - Bismarck, A. T1 - Carbon nanotube enhanced carbon Fibre-Poly(ether ether ketone) interfaces in model hierarchical composites N2 - Poly (ether ether ketone) (PEEK) has a high continuous service temperature, excellent mechanical properties, and good solvent and abrasion resistance, which can be further improved through the addition of carbon nanotubes (CNTs). CNT-PEEK nanocomposites are promising matrices for continuous carbon fibre composites; powder processing can mitigate the high melt viscosities in these systems. In this study, model single fibre (hierarchical) composites were produced by embedding sized and desized carbon fibres in nanocomposite CNTPEEK powders followed by single fibre pull-out tests to assess interfacial characteristics. Carbon fibre-PEEK interfacial shear strength is typically 40–45 MPa. Increasing CNT loadings increased fibre-matrix interfacial shear strength linearly up to ~70 MPa at 5.0 wt%, which was attributed to the CNT-based mechanical modification of the PEEK matrix. Apparent interfacial shear strength was inversely correlated with the embedded fibre length irrespective of carbon fibre sizing or CNT loading, indicating brittle fracture of the fibre-matrix interface. Pulled out carbon fibres were still coated with the matrix, which indicated strong adhesion at the interface in all samples, likely related to a transcrystalline region. Adhesion was, however, negatively affected by the presence of epoxy sizings. Frictional shear strength was independent of embedded fibre length and CNT content for all samples. KW - Keywords: Poly(ether ether ketone) KW - Carbon fibres KW - Carbon nanotubes KW - Interfacial strength KW - Debonding PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550052 DO - https://doi.org/10.1016/j.compscitech.2022.109327 SN - 0266-3538 VL - 221 SP - 1 EP - 8 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-55005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Guerra, E. S. S. A1 - Silva, B. L. A1 - Melo, J. D. D. A1 - Kalinka, Gerhard A1 - Barbosa, A. P. C. T1 - Microscale evaluation of epoxy matrix composites containing thermoplastic healing agent N2 - Among the strategies to produce healable thermosetting systems is their modification by the addition of thermoplastic particles. This work investigates the influence of poly(ethylene-co-methacrylic acid) (EMAA) on fibermatrix interfacial properties of a glass fiber reinforced epoxy matrix composite. Epoxy-EMAA interactions were evaluated using differential scanning calorimetry (DSC) and infrared spectroscopy. The effects of EMAA on the epoxy network formation were evidenced by changes in glass transition temperature, cure kinetics and alteration of chemical groups during cure. Interfacial shear strength (IFSS) measurements obtained by single fiber pull-out tests indicate similar interfacial properties for pure and EMAA modified epoxy. Additionally, the potential for self-healing ability of an EMAA modified epoxy was demonstrated. However, IFSS after a healing cycle for the EMAA modified epoxy was lower as compared to the pure epoxy, because of the lower fiber-EMAA interfacial shear strength. So, thermoplastic healing agents has not only to fill cracks in the matrix material, but also have to be optimized regarding its interface properties to the reinforcing fibers. KW - Interfacial strength KW - Fiber/matrix bond KW - Self-healing KW - Polymer-matrix composites (PMC) PY - 2022 DO - https://doi.org/10.1016/j.compscitech.2022.109843 SN - 0266-3538 VL - 232 SP - 1 EP - 9 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-56379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kalinka, Gerhard T1 - Optische Beobachtungen der Faser-Matrix-Trennung im Pull-out-Versuch N2 - Der Vortrag behandelt Rissentstehung und Ausbreitung an Faser-Matrix-Interfaces, untersucht mit dem optischen Mikroskop. T2 - Composites United, CU-Arbeitsgruppe/n Faser-Matrix-Haftung & Matrices CY - Online meeting DA - 02.12.2021 KW - Faser KW - Matrix KW - Pull-out KW - Interface PY - 2021 AN - OPUS4-53968 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gebhardt, M. A1 - Malolakis, I. A1 - Kalinka, Gerhard A1 - Deubener, J. A1 - Chakraborty, S. A1 - Meiners, D. T1 - Re-use potential of carbon fibre fabric recovered from infusible thermoplastic CFRPs in 2nd generation thermosetting-matrix composites N2 - The research presented here attempts to assess the potential for re-using carbon fibre (CF) fabrics recovered from recycling infusible acrylic thermoplastic carbon fibre reinforced polymer composites (CFRPs) in a universal manner, i.e. by combining with a wide variety of matrices to manufacture 2nd generation composite laminates by resin infusion. The 2nd generation composites have been compared in terms of bulk and interfacial properties against counteparts processed with virgin carbon fibre fabric infused with the same matrices. Generally, an increase in damping (tanδ) was observed in all 2nd generation composites, which can be attributed to a residual thin thermoplastic layer present on the recovered fibres. The interfacial adhesion of the 2nd generation Composites was investigated by shear tests and scanning electron micsoscopy, and also appears to be less influenced by the type of matrix. KW - Composite recycling KW - Thermoplastic matrix KW - Thermosetting resin KW - Fibre/matrix bonding PY - 2021 DO - https://doi.org/10.1016/j.coco.2021.100974 VL - 28 SP - 100974 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-53639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gebhardt, M. A1 - Manolakis, I. A1 - Chatterjee, A. A1 - Kalinka, Gerhard A1 - Deubener, J. A1 - Pfnür, H. A1 - Chakraborty, S. A1 - Meiners, D. T1 - Reducing the raw material usage for room temperature infusible and polymerisable thermoplastic CFRPs through reuse of recycled waste matrix material N2 - In this work, a closed loop recycling process is investigated, which allows polymerised bulk thermoplastic matrix (Elium 150) from production waste (also referred to as recyclate) to be reused as additive in composite manufacturing by vacuum assisted resin infusion (VARI) of virgin Elium 150 monomer. It is shown that this process can save up to 7.5 wt% of virgin material usage in each processing cycle. At the same time, the thermal stability and stiffness of the composite increases with the proportion of recyclate introduced. Contemporarily, the shear and bending properties have also been observed to improve. Gel permeation chromatography (GPC) showed that the changes observed are due to an increase in molecular weight with the recyclate content. In particular, a correlation between the molecular weight and the shear properties of the composite was discovered using single fibre push-out tests. KW - Mechanical properties KW - Recycling KW - Carbon fibres KW - Fibre/matrix bond PY - 2021 DO - https://doi.org/10.1016/j.compositesb.2021.108877 SN - 1359-8368 VL - 216 SP - 108877 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-52711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kalinka, Gerhard A1 - Sahin, M. A1 - Schlögl, S. A1 - Wang, J. A1 - Kaynak, B. A1 - Mühlbacher, I. A1 - Ziegler, W. A1 - Kern, W. A1 - Grützmacher, H. T1 - Tailoring the interfaces in glass fiber-reinforced photopolymer composites N2 - The present work provides a comparative study on the interface and adhesion properties of surface modified single glass fibers embedded in an acrylate matrix. To facilitate a covalent bonding at the fibermatrix interface, the fibers are functionalized with selected organosilanes that comprise either passive (unsaturated C¼C bonds of methacrylate moieties) or photoactive functionalities (photocleavable bis(acyl)phosphane oxide groups). Immobilization of the functional silanes is carried out by a classic silanization reaction involving a condensation reaction across the surface hydroxyl groups of the inorganic glass fibers. The change of the physico-chemical properties of the fibers due to desizing and subsequent surface modification is monitored by X-ray photoelectron spectroscopy and zeta potential measurements. In addition, scanning electron microscopy is used to follow the changes in surface morphology. After the modification step, the desized and modified single fibers are embedded in a photocurable acrylate resin formulation. By performing single fiber pull-out tests, maximum pull-out force, friction strength and apparent interfacial shear strength are determined as a function of the coupled silanes. The results reveal that the attached organosilanes lead to a significant increase in adhesion strength, whilst the performance of the photo-cleavable organosilane is superior to the passive methacryl-functional derivative. KW - Photocleavable organosilanes KW - Fiber-matrix interface KW - Photopolymer composites KW - Single fiber pull-out test KW - Surface modification PY - 2018 DO - https://doi.org/10.1016/j.polymer.2018.03.020 SN - 0032-3861 VL - 141 SP - 221 EP - 231 PB - Elsevier Ltd. CY - New York AN - OPUS4-44784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taketa, I. A1 - Kalinka, Gerhard A1 - Gorbatikh, L. A1 - Lomov, S. A1 - Verpoest, I. T1 - Influence of cooling rate on the properties of carbon fiber unidirectional composites with polypropylene, polyamide 6, and polyphenylene sulfide matrices N2 - The longitudinal and transverse strength of three unidirectional thermoplastic prepreg systems: carbon fiber/polypropylene (CF/PP), polyamide 6 (CF/PA6), and polyphenylene sulfide (CF/PPS) are studied and analytical formulas are proposed for the estimation of matrix and fiber/matrix interface properties from composites properties. Since the matrices are semi-crystalline thermoplastics, the influence of cooling rate on the strength is statistically evaluated. While the 0° tensile strength is found to be independent of the cooling rate, the 90° tensile strength is strongly influenced by the matrix type and cooling rate. The matrix modulus increases as the cooling rate is decreased; the degree of crystallinity also increases. The matrix residual stress, interfacial shear strength, and mode II interlaminar fracture toughness are also found to depend on the cooling rate, with the trends different for different matrices. KW - Matrix residual stress KW - Thermoplastic prepreg KW - Unidirectional composites KW - Cooling rate KW - Interfacial strength PY - 2020 DO - https://doi.org/10.1080/09243046.2019.1651083 SN - 0924-3046 SN - 1568-5519 N1 - Die originale japanische Version des Artikels erschien in: Journal of the Japan Society for Composite Materials, Jg. 44, Nr. 4 (2018), S. 123-128. - The original Japanese version of the article was published in: Journal of the Japan Society for Composite Materials, vol. 44, no. 4 (2018), pp. 123-128. VL - 29 IS - 1 SP - 101 EP - 113 PB - Taylor & Francis CY - London AN - OPUS4-45433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kaiser, T. M. A1 - Braune, C. A1 - Kalinka, Gerhard A1 - Schulz-Kornas, E. T1 - Nano-indentation of native phytoliths and dental tissues: implications for herbivore-plant combat and dental wear proxies N2 - Tooth wear induced by abrasive particles is a key process affecting dental function and life expectancy in mammals. Abrasive particles may be plant endogenous opal phytoliths, exogene wind-blown quartz dust or rain borne mineral particles ingested by mammals. Nano-indentation hardness of abrasive particles and dental tissues is a significant yet not fully established parameter of this tribological system. We provide consistent nano-indentation hardness data for some of the major antagonists in the dental tribosystem (tooth enamel, tooth dentine and opaline phytoliths from silica controlled cultivation). All indentation data were gathered from native tissues under stable and controlled conditions and thus maximize comparability to natural systems. Here we show that native (hydrated) wild boar enamel exceeds any hardness measures known for dry herbivore tooth enamel by at least 3 GPa. The native tooth enamel is not necessarily softer then environmental quartz grit, although there is little overlap. The native hardness of the tooth enamel exceeds that of any silica phytolith hardness recently published. Further, we find that native reed phytoliths equal native suine dentine in hardness, but does not exceed native suine enamel. We also find that native suine enamel is significantly harder than dry enamel and dry phytoliths are harder than native phytoliths. Our data challenge the claim that the culprit of tooth wear may be the food we chew, but suggest instead that wear may relates more to exogenous than endogenous abrasives. KW - Phytolith KW - Indentation hardness KW - Enamel KW - Dentine KW - Tooth wear PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-451417 UR - http://zoobank.org/5C7DBB2B-B27D-4CE6-9656-33C4A0DA0F39 DO - https://doi.org/10.3897/evolsyst.2.22678 VL - 2 SP - 55 EP - 63 PB - PENSOFT CY - USA AN - OPUS4-45141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lüders, C. A1 - Kalinka, Gerhard A1 - Li, Wei A1 - Sinapius, M. A1 - Wille, T. T1 - Experimental and numerical multiscale approach to thermally cycled FRP N2 - Due to the different thermal expansion of the constituent materials, cyclic thermal loading of FRP induces alternating stresses in the material at two scales: at the micro scale (level of fibre–matrix-interaction) and at the macro scale (level of the multidirectional laminate). Especially the micro scale effect is not comprehensively investigated yet. Additionally, computational investigations mostly neglect this effect due to the homogenous modelling of the composite material. As this effect is assumed to significantly contribute to the fatigue of FRP at thermal loads, the present paper suggests an experimental and numerical multiscale approach including Experiments at the different involved material scales to separately observe the effects acting at these scales. The approach also includes numerical modelling for each scale to complement the knowledge gained from the Experiments and to create a basis for the consideration of the micro effect even in macroscopic fatigue models treating homogeneous modelled composites. The main focus of the contribution is to bring the overall Approach up for discussion, rather than to present the multiscale modelling details. KW - Fatigue KW - Thermal cycling KW - Fibre reinforced plastic KW - Cryogenic KW - Carbon Fibre KW - Epoxy Resin PY - 2020 DO - https://doi.org/10.1016/j.compstruct.2020.112303 SN - 0263-8223 VL - 244 SP - 112303 PB - Elsevier Ltd. CY - Niederlande AN - OPUS4-50844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Palantöken, Sinam A1 - Bethke, K. A1 - Zivanovic, V. A1 - Kneipp, Janina A1 - Rademann, Klaus A1 - Kalinka, Gerhard T1 - Cellulose hydrogels physically crosslinked by glycine: Synthesis, characterization, thermal and mechanical properties N2 - Biopolymers are very efficient for significant applications ranging from tissue engineering, biological devices to water purification. There is a tremendous potential value of cellulose because of ist being the most abundant biopolymer on earth, swellability, and functional groups to be modified. A novel, highly efficient route for the fabrication of mechanically stable and natural hydrogels is described in which cellulose and glycine are dissolved in an alkaline solution of NaOH and neutralized in an acidic solution. The dissolving temperature and the glycine amount are essential parameters for the self-assembly of cellulose chains and for Tuning the morphology and the aggregate structures of the resulting hydrogels. Glycine plays the role of a physical crosslinker based on the Information obtained from FTIR and Raman spectra. Among the prepared set of hydrogels, CL5Gly30 hydrogels have the highest capacity to absorb water. The prepared CL5Gly30 gels can absorb up to seven times their dry weight due to its porous 3-D network structure. CL5Gly10 hydrogel exhibits 80% deformation under 21 N force executed. The method developed in this article can contribute to the application of heavy metal adsorption in aqueous solutions for water purification and waste management. KW - Biopolymer KW - Cellulose KW - Hydrogel KW - Natural KW - Synthesis PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486845 DO - https://doi.org/10.1002/APP.48380 SN - 1097-4628 SN - 0021-8995 VL - 136 SP - 48380, 1 EP - 11 PB - Wiley CY - USA AN - OPUS4-48684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -