TY - JOUR A1 - Jaenisch, Gerd-Rüdiger A1 - Ewert, Uwe A1 - Waske, Anja A1 - Funk, Alexander T1 - Radiographic Visibility Limit of Pores in Metal Powder for Additive Manufacturing JF - Metals - special isssue - Advanced Characterization and On-Line Process Monitoring of Additively Manufactured Materials and Components N2 - The quality of additively manufactured (AM) parts is determined by the applied process parameters used and the properties of the feedstock powder. The influence of inner gas pores in feedstock particles on the final AM product is a phenomenon which is difficult to investigate since very few non-destructive measurement techniques are accurate enough to resolve the micropores. 3D X-ray computed tomography (XCT) is increasingly applied during the process chain of AM parts as a non-destructive monitoring and quality control tool and it is able to detect most of the pores. However, XCT is time-consuming and limited to small amounts of feedstock powder, typically a few milligrams. The aim of the presented approach is to investigate digital radiography of AM feedstock particles as a simple and fast quality check with high throughput. 2D digital radiographs were simulated in order to predict the visibility of pores inside metallic particles for different pore and particle diameters. An experimental validation was performed. It was demonstrated numerically and experimentally that typical gas pores above a certain size (here: 3 to 4.4 µm for the selected X-ray setup), which could be found in metallic microparticles, were reliably detected by digital radiography. KW - Additive manufacturing KW - Feedstock powder KW - Porosity KW - Digital radiography KW - Numerical simulation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517880 DO - https://doi.org/10.3390/met10121634 VL - 10 IS - 12 SP - 1634 PB - MDPI AN - OPUS4-51788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaenisch, Gerd-Rüdiger A1 - Wieder, Frank A1 - Vogel, Justus A1 - Ewert, Uwe A1 - Bellon, Carsten A1 - Messerschmid, Magdalena ED - Xu, C. T1 - Scatter imaging – Simulation of aperture focusing by deconvolution T2 - Proceedings of 2017 IEEE far east NDT new technology and application forum (FENDT 2017) N2 - X-ray scatter imaging is a well-established NDT technique to inspect complex objects using only a single-sided access. We present a specially designed multi-slit scatter camera consisting of several twisted slits which are parallelly arranged in a metal block. The camera projects one image per slit to the digital detector array, where the images are overlaying each other. The aperture is corrected based on a de-convolution algorithm to focus the overlaying projections into a single representation of the object. To achieve high scatter intensities from an object, it is necessary to optimize the parameters of the scatter system by simulation. T2 - IEEE Far East NDT New Technology & Application Forum CY - Xi'an, China DA - 22.06.2017 KW - Scatter imaging KW - Computer simulation KW - Aperture focusing KW - Deconvolution PY - 2018 SN - 978-1-5386-1615-4 DO - https://doi.org/10.1109/FENDT.2017.8584606 SP - 301 EP - 306 PB - IEEE CY - Piscataway, NJ AN - OPUS4-48395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -