TY - CONF A1 - Theiler, Géraldine T1 - Friction and wear of polymer materials at cryogenic temperatures N2 - This lecture deals with the friction and wear of polymeric materials at cryogenic temperatures. The first part is dedicated to the low temperature properties of polymers and cryogenic environment as well as an introduction to cryotribology and friction models. The second part presents some experimental results, focusing on the effect of polymer composition, cryogenic media and stick-slip behaviour. T2 - Invited lecture, TRIBOS+ program at Lulea University of Technology CY - Lulea, Sweden DA - 29.06.2021 KW - Polymers KW - Cryogenic temperature KW - Friction KW - Wear PY - 2021 AN - OPUS4-53706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Influence of the counterface on the sliding behavior of polymer materials in hydrogen N2 - This presentation deals with the influence of the counterface materials on the sliding behaviour of some polymer materials in hydrogen. Polyimide (PI), polyetheretherketone (PEEK) and Polytetrafluoroethylene (PTFE) materials were investigated against hardened 52100 martensitic bearing steel and 304 austenitic stainless steel with similar roughness (Ra = 0.2 μm). Results indicate that the friction and wear of PI and PEEK materials depend on the counterface material. This effect wasn’t observed for PTFE composites. While the tribological performance of polyimide is better against 52100 in hydrogen, improved sliding behaviour of PEEK materials is observed with 304 counterface, particularly at higher sliding speed. Surface analyses of the transfer film reveal that the influence of the counterface is primarily related to the chemical nature of the steel for PI and to the thermal conductivity of the disc for PEEK materials. T2 - Hydrogenius & I2CNER Tribology Symposium CY - Online meeting DA - 29.01.2021 KW - Polymers KW - Hydrogen KW - Counterface KW - Friction KW - Wear PY - 2021 AN - OPUS4-52093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Friction and wear characteristics of polymers in gaseous and liquid hydrogen N2 - The presentation deals with the investigation of polymer composites for their suitability for friction systems in gaseous and liquid hydrogen. T2 - 59. Tribologie-Fachtagung CY - Goettingen, Germany DA - 24.09.2018 KW - Friction KW - Wear KW - Polymer composites KW - Hydrogen KW - Cryogenic temperature PY - 2018 AN - OPUS4-46184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - High performance polymer materials for tribological applications in hydrogen and methane N2 - The development of hydrogen technologies is a key strategy to reduce greenhouse gas emission worldwide. Power-to-Gas is a challenging solution, in which hydrogen and methane can be used in mobility, industry, heat supply and electricity generation applications. This presentation deals with the tribological behaviour of polymer materials in hydrogen and methane, both in gas and in liquefied form. T2 - ECOTRIB 2019 CY - Vienna, Austria DA - 12.06.2019 KW - Sliding wear KW - Polymer materials KW - Hydrogen methane PY - 2019 AN - OPUS4-48250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Sliding performance of polymer materials in hydrogen and methane N2 - In this talk, the sliding performance of polymer materials in hydrogen and methane are presented. The influence of the environmental conditions is discussed in terms of material composition, counterface, transfer film formation, and triboreactions. T2 - International Tribology Conference/ITC CY - Sendai, Japan DA - 17.09.2019 KW - Friction KW - Wear KW - Polymer composites KW - Hydrogen KW - Methane PY - 2019 AN - OPUS4-49148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -