TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - High performance polymer materials for tribological applications in hydrogen and methane N2 - The development of hydrogen technologies is a key strategy to reduce greenhouse gas emission worldwide. Power-to-Gas is a challenging solution, in which hydrogen and methane can be used in mobility, industry, heat supply and electricity generation applications. This presentation deals with the tribological behaviour of polymer materials in hydrogen and methane, both in gas and in liquefied form. T2 - ECOTRIB 2019 CY - Vienna, Austria DA - 12.06.2019 KW - Sliding wear KW - Polymer materials KW - Hydrogen methane PY - 2019 AN - OPUS4-48250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Geraldine T1 - Tribology of polymer materials in hydrogen N2 - The polymer chemical structure of the polyimide has a major influence on the tribological behaviour. The addition of graphite in PI2 has a beneficial effect in hydrogen on the friction and wear. The low friction of graphite is associated with a lubricant film in hydrogen. The influence of hydrogen on graphite is more effective than humidity. CNTs have a similar effect to that of graphite in PEEK composites. TiO2 particles improve significantly the wear rate both in vacuum and hydrogen environment. In LH2 friction and wear decrease for unfilled polymers. Friction of graphite filled composites increases slightly and wear rate is stable. T2 - 10. International Hydrogen Energy Development Forum 2016 / 2016 HYDROGENIUS & I2CNER Tribology Symposium CY - Fukuoka, Japan DA - 04.02.2016 KW - Hydrogen KW - Tribology KW - Polymer materials KW - Cryogenic temperature KW - CNT KW - TiO2 KW - PEEK PY - 2016 AN - OPUS4-35641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Sliding performance of polymer materials in hydrogen and methane N2 - In this talk, the sliding performance of polymer materials in hydrogen and methane are presented. The influence of the environmental conditions is discussed in terms of material composition, counterface, transfer film formation, and triboreactions. T2 - International Tribology Conference/ITC CY - Sendai, Japan DA - 17.09.2019 KW - Friction KW - Wear KW - Polymer composites KW - Hydrogen KW - Methane PY - 2019 AN - OPUS4-49148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Wachtendorf, Volker A1 - Elert, Anna Maria A1 - Weidner, Steffen T1 - Effects of UV radiation on the friction behavior of thermoplastic polyurethanes N2 - The effects of UV radiation and humidity condition on the frictional properties of TPU materials are presented in this paper. Photooxidative degradation of polymer leads to deterioration of physical and mechanical properties, which affect its tribological behavior significantly. Unfilled TPUs lose their anti-slip properties. T2 - The 6th World Tribology Congress (WTC 2017) CY - Beijing, China DA - 17.09.2017 KW - TPU KW - UV radiation KW - Friction PY - 2017 AN - OPUS4-42440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Friction and wear characteristics of polymers in gaseous and liquid hydrogen N2 - The presentation deals with the investigation of polymer composites for their suitability for friction systems in gaseous and liquid hydrogen. T2 - 59. Tribologie-Fachtagung CY - Goettingen, Germany DA - 24.09.2018 KW - Friction KW - Wear KW - Polymer composites KW - Hydrogen KW - Cryogenic temperature PY - 2018 AN - OPUS4-46184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -