TY - CONF A1 - Theiler, Geraldine T1 - Einfluss von tiefen Temperaturen und Wasserstoff auf das Verhalten von Polymer-Verbundwerkstoffen für tribologische Anwendungen T2 - BAM Seminar der Abteilung VI CY - Berlin, Germany DA - 2003-05-22 PY - 2003 AN - OPUS4-4302 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Geraldine T1 - Einfluss von tiefen Temperaturen und Wasserstoff auf das Verhalten von Polymer-Verbundwerkstoffen für tribologische Anwendungen T2 - Vortrag TU Berlin CY - Berlin, Germany DA - 2003-06-18 PY - 2003 AN - OPUS4-4303 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Geraldine T1 - Einfluss der Umgebung auf das Gleitverhalten von Polymerwerkstoffen N2 - In diesem Beitrag wird der Einfluss der Umgebung auf das Reibungs- und Verschleißverhalten von Polymerwerkstoffen präsentiert. Dabei wurden reine und mit Graphit gefüllte Polymere an Luft, im Vakuum und in einer Wasserstoffumgebung bei Raumtemperatur sowie in flüssigem Wasserstoff bei – 253°C untersucht. T2 - VDI Arbeitskreis Kunststofftechnik CY - Berlin, Germany DA - 24.04.2018 KW - Reibung KW - Polymere KW - Wasserstoff KW - Kryogene Temperatur KW - Vakuum PY - 2018 AN - OPUS4-44788 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Geraldine T1 - Effects of UV radiation on the friction behavior of thermoplastic polyurethanes N2 - The effects of UV radiation and humidity condition on the frictional properties of TPU materials are presented in this paper. Photooxidative degradation of polymer leads to deterioration of physical and mechanical properties, which affect its tribological behavior significantly. Unfilled TPUs lose their anti-slip properties. T2 - The 6th World Tribology Congress CY - Beijing, China DA - 17.09.2017 KW - TPU KW - UV radiation KW - Friction PY - 2017 SP - 1 EP - 4 AN - OPUS4-42443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Theiler, Geraldine A1 - Wachtendorf, Volker A1 - Elert, Anna Maria A1 - Weidner, Steffen T1 - Effects of UV radiation on the friction behavior of thermoplastic polyurethanes N2 - The effects of weathering exposure on unfilled and filled thermoplastic polyurethanes (TPU) materials are described as performed under different humidity conditions. For this purpose, a weathering device was used with UV-A 340 nm lamps at a constant temperature of 40 °C. The effects of environmental (UV and humidity condition) degradation on the frictional properties of TPU materials are presented along with surface analyses to characterize the chemistry of the degradative process. Photooxidative degradation of unfilled polymer leads to deterioration of physical and mechanical properties, which affects its tribological behavior significantly. Due to crosslinking, the stiffness of the material increases, reducing drastically the friction coefficient of unfilled TPUs. The frictional behavior of glass fiber reinforced TPU is less affected by radiation. KW - Photooxidation KW - UV radiation KW - Friction KW - TPU KW - Humidity PY - 2018 DO - https://doi.org/10.1016/j.polymertesting.2018.08.006 SN - 0142-9418 SN - 1873-2348 VL - 70 SP - 467 EP - 473 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-45709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Geraldine T1 - Effects of UV radiation on the friction behavior of thermoplastic polyurethanes N2 - The effects of UV radiation and humidity condition on the frictional properties of TPU materials are presented in this paper. Photooxidative degradation of polymer leads to deterioration of physical and mechanical properties, which affect its tribological behavior significantly. Unfilled TPUs lose their anti-slip properties. T2 - The 6th World Tribology Congress (WTC 2017) CY - Beijing, China DA - 17.09.2017 KW - TPU KW - UV radiation KW - Friction PY - 2017 AN - OPUS4-42440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Geraldine T1 - Effect of temperature on the friction behaviour of rubber materials in hydrogen N2 - Safety and reliability are the major challenges to face for the development and acceptance of hydrogen technology. It is therefore crucial to study deeply material compatibility, in particular for tribological components that are directly in contact with hydrogen. Some of the most critical parts are sealing components that face high risk of damage due variation of pressure, temperature and mechanical stress. In this study, the friction and wear behaviour of several rubber materials was evaluated in hydrogen environment at ambient and low temperature. Tests were performed against 316L disks in a reciprocation motion. Results reveal that the hydrogen affects the friction and wear behaviour of most materials. The friction mechanism is dominated by deformation for most rubber materials at ambient temperature while sliding occurs at low temperature due to the increased hardness of the rubbers. T2 - Polytrib 2024 CY - Portorož, Slovenia DA - 03.10.2024 KW - Reciprocating sliding KW - Rubber materials KW - Hydrogen KW - Low temperature PY - 2024 AN - OPUS4-62019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Theiler, Geraldine A1 - Cano Murillo, Natalia A1 - Hausberger, Andreas T1 - Effect of hydrogen pressure on the fretting behavior of rubber materials N2 - Safety and reliability are the major challenges to face for the development and acceptance of hydrogen technology. It is therefore crucial to deeply study material compatibility, in particular for tribological components that are directly in contact with hydrogen. Some of the most critical parts are sealing materials that need increased safety requirements. In this study, the fretting behavior of several elastomer materials were evaluated against 316L stainless steel in an air and hydrogen environment up to 10 MPa. Several grades of cross-linked hydrogenated acrylonitrile butadiene (HNBR), acrylonitrile butadiene (NBR) and ethylene propylene diene monomer rubbers (EPDM) were investigated. Furthermore, aging experiments were conducted for 7 days under static contions in 100 MPa of hydrogen followed by rapid gas decompression. Fretting tests revealed that the wear of these compounds is significantly affected by the hydrogen environment compared to air, especially with NBR grades. After the aging experiment, the friction response of the HBNR grades is characterized by increased adhesion due to elastic deformation, leading to partial slip. KW - Fretting wear KW - Rubbers KW - Hydrogen KW - High-pressure PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608462 DO - https://doi.org/10.3390/lubricants12070233 VL - 12 IS - 7 SP - 1 EP - 17 PB - MDPI AN - OPUS4-60846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Geraldine T1 - Effect of hydrogen pressure on the fretting behavior of elastomers N2 - In this study, the fretting behavior of several elastomer materials against 316L were evaluated in air and hydrogen environment up to 10 MPa. Furthermore, aging experiments were conducted for 7 days under static conditions in 100 MPa hydrogen and the physical and mechanical properties of the rubber materials were examined before and after hydrogen exposure. Fretting tests revealed that the wear of these compounds is significantly affected by the hydrogen environment compared to air, especially with NBR grades. After aging experiment, the friction response of HNBR grades is characterized by increased adhesion due to elastic deformation, leading to partial slip. T2 - ITC 2023: 9th International Tribology Conference 2023 CY - Fukuoka, Japan DA - 26.09.2023 KW - Hydrogen KW - Fretting KW - Elastomers PY - 2023 AN - OPUS4-61962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Geraldine T1 - Effect of hydrogen pressure on the fretting behavior of elastomers N2 - In this study, the fretting behavior of several elastomer materials against 316L were evaluated in air and hydrogen environment up to 10 MPa. Furthermore, aging experiments were conducted for 7 days under static conditions in 100 MPa hydrogen and the physical and mechanical properties of the rubber materials were examined before and after hydrogen exposure. Fretting tests revealed that the wear of these compounds is significantly affected by the hydrogen environment compared to air, especially with NBR grades. After aging experiment, the friction response of HNBR grades is characterized by increased adhesion due to elastic deformation, leading to partial slip. T2 - 4th Int. Conf. on Polymer Tribology, PolyTrib 2022 CY - Stockholm, Sweden DA - 05.12.2022 KW - Hydrogen KW - Fretting KW - Elastomers PY - 2022 AN - OPUS4-62006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -