TY - CONF A1 - Spaltmann, Dirk A1 - Manier, Charles-Alix A1 - Theiler, Geraldine A1 - Proß, E. A1 - Ziegele, H. A1 - Kursawe, S. A1 - Woydt, Mathias T1 - Überrollbeständige Dünnschichten unter geschmierter Wälzreibung bis 3.500 MPa T2 - 49. Tribologie-Fachtagung - Reibung, Schmierung und Verschleiß - Forschung und praktische Anwendungen T2 - 49. Tribologie-Fachtagung - Reibung, Schmierung und Verschleiß - Forschung und praktische Anwendungen CY - Göttingen, Deutschland DA - 2008-09-22 KW - Thin film coating KW - Slip-rolling KW - DLC KW - ta-C KW - Zr(C,N) PY - 2008 SN - 978-3-00-025676-9 VL - I SP - 2/1 EP - 2/16 AN - OPUS4-31750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine T1 - Tribology of polymers materials in hydrogen N2 - The paper deals with the tribological properties of polymers in hydrogen gas at ambient temperature as well as in liquid hydrogen (-253°C). The influence of hydrogen is discussed in relation to compositions and triboreactions. T2 - Hydrogenius and I2CNER Tribology Symposium CY - Fukuoka, Japan DA - 02.04.2016 KW - Polymers KW - Hydrogen KW - Tribology PY - 2016 AN - OPUS4-38138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Tribology of polymeric materials in gaseous and liquid hydrogen N2 - This presentation gives an overview of the tribological behaviour of polymeric materials in gaseous and luquid hydrogen. T2 - HYDROGENIUS-BAM Joint Hydrogen Symposium CY - Online meeting DA - 06.07.2021 KW - Polymers KW - Hydrogen KW - Friction KW - Wear PY - 2021 AN - OPUS4-53701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Geraldine T1 - Tribology of polymer materials in hydrogen N2 - The polymer chemical structure of the polyimide has a major influence on the tribological behaviour. The addition of graphite in PI2 has a beneficial effect in hydrogen on the friction and wear. The low friction of graphite is associated with a lubricant film in hydrogen. The influence of hydrogen on graphite is more effective than humidity. CNTs have a similar effect to that of graphite in PEEK composites. TiO2 particles improve significantly the wear rate both in vacuum and hydrogen environment. In LH2 friction and wear decrease for unfilled polymers. Friction of graphite filled composites increases slightly and wear rate is stable. T2 - 10. International Hydrogen Energy Development Forum 2016 / 2016 HYDROGENIUS & I2CNER Tribology Symposium CY - Fukuoka, Japan DA - 04.02.2016 KW - Hydrogen KW - Tribology KW - Polymer materials KW - Cryogenic temperature KW - CNT KW - TiO2 KW - PEEK PY - 2016 AN - OPUS4-35641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Tribology of polymer materials in cryogenic hydrogen and methane N2 - The development of hydrogen technologies is a key strategy to reduce greenhouse gas emission worldwide. Power-to-Gas is a challenging solution, in which hydrogen and methane can be used in mobility, industry, heat supply and electriity generation applications. This presentation deals with the tribological behaviour of polymer materials in hydrogen and methane, both in gas and in liquid form. T2 - 2018 HYDROGENIUS & I2CNER Tribology Symposium CY - Fukuoka, Japan DA - 02.02.2018 KW - Hydrogen KW - Methane KW - Sliding friction KW - Polymers KW - Cryogenic temperature PY - 2018 AN - OPUS4-44483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gradt, Thomas A1 - Theiler, Géraldine T1 - Tribological properties of polymer composites for applications in LNG environment T2 - Industrial and Automotive Lubrication N2 - In a first test series, the friction and wear properties of 6 polymeric candidate materials for application in LNG tribosystems were tested. The most favorable properties showed PTFE composite, filled with carbon fibers and PEEK, which showed low and stable friction and a wear coefficient in the order of 10-7 mm3N-1m-1. PTFE containing PEEK composites seem to be also appropriate for LNG applications. Admixtures of graphite as solid lubricant result in lower wear. Contrary, a lubricating mechanism of MoS2 was not observed. The PI-materials showed comparatively high friction and medium wear. T2 - 21th International Colloquium Tribology CY - Stuttgart/Ostfildern, Germany DA - 09.01.2018 KW - Tribology KW - PEEK KW - PTFE composites KW - Friction PY - 2018 SP - 1 EP - 2 AN - OPUS4-43900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Theiler, Geraldine A1 - Gradt, Thomas T1 - Tribological characteristics of polyimide composites in hydrogen environment JF - Tribology International N2 - The influence of hydrogen environment on the friction and wear behavior of polyimide (PI) composites was investigated for two different PI-types (PI1 and PI2) filled with natural or synthetic graphite. Sliding tests were run against AISI 52100 steel and the worn surfaces as well as the transfer film were analyzed by means of SEM, EDX and Infrared Spectroscopy. Results indicate that the chemical structure of the polyimide has a major influence on the tribological behavior. While the friction of PI2 remains rather stable in all environments, PI1 showed very low friction in hydrogen without any lubricant. The lubricity of graphite was found to be more effective in hydrogen than in moist air. KW - Sliding friction KW - Polyimide KW - Graphite KW - Hydrogen PY - 2015 DO - https://doi.org/10.1016/j.triboint.2015.06.001 SN - 0301-679X VL - 92 SP - 162 EP - 171 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-33555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gradt, Thomas A1 - Theiler, Geraldine T1 - Tribological behaviour of solid lubricants in hydrogen environment T2 - WTC 2009 - World tribology congress (Proceedings) T2 - World tribology congress 2009 CY - Kyoto, Japan DA - 2009-09-06 KW - Tribologie KW - Kompositwerkstoffe KW - Festschmierstoffe KW - Wasserstoff PY - 2009 SN - 978-4-9900139-9-8 IS - B1-122 SP - 15 AN - OPUS4-20137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gradt, Thomas A1 - Theiler, Geraldine T1 - Tribological behaviour of solid lubricants in hydrogen environment JF - Tribology online N2 - For further development of hydrogen technology, it is necessary to have a sufficient number of materials for safe and reliable operation available. Frictional contacts exposed to hydrogen, are critical because of vanishing protective oxide layers in the presence of a chemical reducing environment. Furthermore, liquid lubricants are often not applicable, because of purity requirements, or very low temperatures in the case of liquid hydrogen. Thus, for numerous tribosystems in hydrogen technology, solid lubrication is the only possible method for reducing friction and wear. Therefore, investigations on the tribological behaviour of friction reducing materials, such as PTFE, graphite, DLC and MoS2, in inert and hydrogen environment were carried out. The results show that solid lubricants, applied as coatings or as components in polymer composites, are able to reduce friction and wear in gaseous as well as in liquid hydrogen. However, some materials are very sensitive to the environmental medium. KW - Hydrogen environment KW - Low temperatures KW - Solid lubricants KW - Coatings KW - Polymer composites PY - 2011 DO - https://doi.org/10.247/trol.6.117 SN - 1881-2198 VL - 6 IS - 2 SP - 117 EP - 122 CY - Tokyo, Japan AN - OPUS4-23252 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hübner, Wolfgang A1 - Theiler, Geraldine A1 - Klein, P. A1 - Friedrich, K. T1 - Tribological behaviour of PTFE composites against steel at cryogenic temperatures T2 - Abstracts, papers, posters of the WTC 2001 T2 - 2nd World Tribology Congress ; 2nd WTC 2001 CY - Vienna, Austria DA - 2001-09-03 KW - PTFE composite KW - Cryogenic temperature KW - Transfer film KW - SEM KW - XPS PY - 2001 SN - 3-901657-09-6 SP - 1(?) EP - 4(?) PB - ÖTG CY - Vienna AN - OPUS4-12660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -