TY - JOUR A1 - Ganose, Alex M. A1 - Sahasrabuddhe, Hrushikesh A1 - Asta, Mark A1 - Beck, Kevin A1 - Biswas, Tathagata A1 - Bonkowski, Alexander A1 - Bustamante, Joana A1 - Chen, Xin A1 - Chiang, Yuan A1 - Chrzan, Daryl C. A1 - Clary, Jacob A1 - Cohen, Orion A. A1 - Ertural, Christina A1 - Gallant, Max C. A1 - George, Janine A1 - Gerits, Sophie A1 - Goodall, Rhys E. A. A1 - Guha, Rishabh D. A1 - Hautier, Geoffroy A1 - Horton, Matthew A1 - Inizan, T. J. A1 - Kaplan, Aaron D. A1 - Kingsbury, Ryan S. A1 - Kuner, Matthew C. A1 - Li, Bryant A1 - Linn, Xavier A1 - McDermott, Matthew J. A1 - Mohanakrishnan, Rohith Srinivaas A1 - Naik, Aakash A. A1 - Neaton, Jeffrey B. A1 - Parmar, Shehan M. A1 - Persson, Kristin A. A1 - Petretto, Guido A1 - Purcell, Thomas A. R. A1 - Ricci, Francesco A1 - Rich, Benjamin A1 - Riebesell, Janosh A1 - Rignanese, Gian-Marco A1 - Rosen, Andrew S. A1 - Scheffler, Matthias A1 - Schmidt, Jonathan A1 - Shen, Jimmy-Xuan A1 - Sobolev, Andrei A1 - Sundararaman, Ravishankar A1 - Tezak, Cooper A1 - Trinquet, Victor A1 - Varley, Joel B. A1 - Vigil-Fowler, Derek A1 - Wang, Duo A1 - Waroquiers, David A1 - Wen, Mingjian A1 - Yang, Han A1 - Zheng, Hui A1 - Zheng, Jiongzhi A1 - Zhu, Zhuoying A1 - Jain, Anubhav T1 - Atomate2: Modular workflows for materials science N2 - High-throughput density functional theory (DFT) calculations have become a vital element of computational materials science, enabling materials screening, property database generation, and training of “universal” machine learning models. While several software frameworks have emerged to support these computational efforts, new developments such as machine learned force fields have increased demands for more flexible and programmable workflow solutions. This manuscript introduces atomate2, a comprehensive evolution of our original atomate framework, designed to address existing limitations in computational materials research infrastructure. Key features include the support for multiple electronic structure packages and interoperability between them, along with generalizable workflows that can be written in an abstract form irrespective of the DFT package or machine learning force field used within them. Our hope is that atomate2's improved usability and extensibility can reduce technical barriers for high-throughput research workflows and facilitate the rapid adoption of emerging methods in computational material science. KW - Automation KW - Materials design KW - DFT workflows KW - Phonons KW - Thermal conductivity KW - Bonding analysis PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-635759 DO - https://doi.org/10.1039/d5dd00019j SN - 2635-098X SP - 1 EP - 30 PB - Royal Society of Chemistry (RSC) CY - Cambridge AN - OPUS4-63575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernges, T. A1 - Hanus, R. A1 - Wankmiller, B. A1 - Imasato, K. A1 - Lin, S. A1 - Ghidiu, M. A1 - Gerlitz, M. A1 - Peterlechner, M. A1 - Graham, S. A1 - Hautier, G. A1 - Pei, Y. A1 - Hansen, M. R. A1 - Wilde, G. A1 - Snyder, G. J. A1 - George, Janine A1 - Agne, M T. A1 - Zeier, W. G. T1 - Considering the Role of Ion Transport in Diffuson-Dominated Thermal Conductivity N2 - Next-generation thermal management requires the development of low lattice thermal conductivity materials, as observed in ionic conductors. For example, thermoelectric efficiency is increased when thermal conductivity is decreased. Detrimentally, high ionic conductivity leads to thermoelectric device degradation. Battery safety and design also require an understanding of thermal transport in ionic conductors. Ion mobility, structural complexity, and anharmonicity have been used to explain the thermal transport properties of ionic conductors. However, thermal and ionic transport are rarely discussed in direct comparison. Herein, the ionic conductivity of Ag+ argyrodites is found to change by orders of magnitude without altering the thermal conductivity. Thermal conductivity measurements and two-channel lattice dynamics modeling reveal that the majority of Ag+ vibrations have a non-propagating diffuson-like character, similar to amorphous materials. It is found that high ionic mobility is not a requirement for diffuson-mediated transport. Instead, the same bonding and structural traits that can lead to fast ionic conduction also lead to diffuson-mediated transport. Bridging the fields of solid-state ionics and thermal transport, it is proposed that a vibrational perspective can lead to new design strategies for functional ionic conducting materials. As a first step, the authors relate the so-called Meyer-Neldel behavior in ionic conductors to phonon occupations. KW - Diffusons KW - DFT KW - Phonons KW - Thermoelectrics PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547140 DO - https://doi.org/10.1002/aenm.202200717 SN - 1614-6832 VL - 12 IS - 22 SP - 1 EP - 13 PB - Wiley VHC-Verlag AN - OPUS4-54714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -