TY - CONF A1 - Bulling, Jannis A1 - Franosch, Georg A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens ED - Rizzo, P. ED - Milazzo, A. T1 - Sensitivity of Ultrasonic Guided Waves to Elastic Constants: A Numerical Study N2 - The dispersive properties of Lamb waves can be utilised for material characterisation because the frequency-wavenumber-relationship, as well as the group velocity, depend on material parameters. These dependencies make a non-destructive estimation of an elastic constant possible. This preliminary study investigates the sensitivity of dispersion curves caused by a change in elastic constants. The Scaled Boundary Finite Element Method is used to compute special dispersion curves, which show the sensitivity value of the frequency and group velocity as a colour value. This representation allows for easy identification of patterns and local effects. Two sets of dispersion curves are presented, one set for a steel plate and the other set for a plate made of a carbon fibre reinforced polymer. In general, we notice that the sensitivity often increases with the frequency and that higher-order modes seem to be more suitable for material characterisation. Moreover, specific modes respond to material changes while others are relatively unaffected, which must be taken into consideration for material characterisation. T2 - European Workshop on Structural Health Monitoring (EWSHM 2020) CY - Online meeting DA - 06.07.2020 KW - Scaled Boundary Finite Element Method KW - Lamb waves KW - Dispersion curves KW - Carbon fibre reinforced polymer KW - Transverse isotropy PY - 2021 SN - 978-3-030-64593-9 U6 - https://doi.org/10.1007/978-3-030-64594-6_73 VL - 127 SP - 759 EP - 768 PB - Springer CY - Cham AN - OPUS4-51986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -