TY - JOUR A1 - Pulz, Robert A1 - Rehmer, Birgit A1 - Schneider, G.A. A1 - Skrotzki, Birgit T1 - Thermal shock study on different advanced ceramics by laser irradiation in different media JF - Advanced engineering materials N2 - The thermal shock behavior of three commercial-advanced ceramics (SSiC, MgO–PSZ, Al2O3) is characterized in air and vacuum applying a laser thermal shock. The available testing system permits the reproducible setting of defined temperature profiles in thin disks and allows a heating-up thermal shock in various media. Due to the accurate determination of the time- and space-resolved temperature distribution, the local stress state can be calculated as a function of time. It is shown that the thermal shock strength is highest for SSiC and lowest in Al2O3 with MgO–PSZ in between. The approach presented in this work allows quantifying the stress state at failure in terms of tangential tensile stress. The investigated environment does not affect the thermal shock resistance under the studied experimental conditions. KW - Laser-thermal shock KW - Advanced ceramic KW - Stress distribution KW - Thermal shock stress KW - Weibull statistics PY - 2016 UR - http://onlinelibrary.wiley.com/doi/10.1002/adem.201500162/full DO - https://doi.org/10.1002/adem.201500162 SN - 1438-1656 VL - 18 IS - 1 SP - 132 EP - 140 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-33456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martínez, N.A. A1 - Pereira, S.V. A1 - Bertolino, F.A. A1 - Schneider, Rudolf A1 - Messina, G.A. A1 - Raba, J. T1 - Electrochemical detection of a powerful estrogenic endocrine disruptor: ethylestradiol in water samples through bioseparation procedure JF - Analytica chimica acta N2 - The synthetic estrogen ethinylestradiol (EE2) is an active component of oral contraceptives (OCs), considered as an endocrine disrupting compound (EDC). It is excreted from humans and released via sewage treatment plant effluents into aquatic environments. EDCs are any environmental pollutant chemical that, once incorporated into an organism, affects the hormonal balance of various species including humans. Its presence in the environment is becoming of great importance in water quality. This paper describes the development of an accurate, sensitive and selective method for capture, preconcentration and determination of EE2 present in water samples using: magnetic particles (MPs) as bioaffinity support for the capture and preconcentration of EE2 and a glassy carbon electrode modified with multi-walled carbon nanotubes (MWCNTs/GCE) as detection system. The capture procedure was based on the principle of immunoaffinity, the EE2 being extracted from the sample using the anti-EE2 antibodies (anti-EE2 Ab) which were previously immobilized on MPs. Subsequently the analyte desorption was done employing a sulfuric acid solution and the determination of the EE2 in the pre-concentrated solution was carried out by square wave voltammetry (SWV). This method can be used to determine EE2 in the range of 0.035–70 ng L-1 with a detection limit (LOD) of 0.01 ng L-1 and R.S.D. < 4.20%. The proposed method has been successfully applied to the determination of EE2 in water samples and it has promising analytical applications for the direct determination of EE2 at trace levels. KW - Magnetic particles KW - Bioseparation KW - Ethinylestradiol KW - Electrochemistry KW - Immunoassay KW - Elektrochemischer Sensor KW - Endokrine Disruptoren KW - Hormone KW - Ethinylestradiol KW - EE2 KW - Östrogene PY - 2012 DO - https://doi.org/10.1016/j.aca.2012.02.033 SN - 0003-2670 SN - 1873-4324 SN - 0378-4304 VL - 723 SP - 27 EP - 32 PB - Elsevier CY - Amsterdam AN - OPUS4-25656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martínez, N.A. A1 - Schneider, Rudolf A1 - Messina, G.A. A1 - Raba, J. T1 - Modified paramagnetic beads in a microfluidic system for the determination of ethinylestradiol (EE2) in river water samples JF - Biosensors & bioelectronics N2 - In this work, we have developed and characterized a novel microfluidic immunoassay methodology for rapid and sensitive quantification of ethinylestradiol (EE2) in river water samples. The detection of EE2 was carried out using a competitive direct immunoassay method based on the use of anti-EE2 polyclonal antibodies immobilized on magnetic microspheres 3-aminopropyl-modified manipulated for an external removable magnet. The EE2 present in the water sample was allowed to compete with EE2-horseradish peroxidase (HPR) conjugated for the immobilized anti-EE2 antibody. The HPR, in the presence of hydrogen peroxide (H2O2) catalyzes the oxidation of catechol (Q) whose back electrochemical reduction was detected on gold electrode at 0.0 V. The response current obtained from the product of enzymatic reaction is inversely proportional to the amount of EE2 in the water sample. The electrochemical detection can be done within 1 min and total assay time was 30 min. The calculated detection limits for electrochemical detection and the ELISA procedure are 0.09 and 0.32 ng L-1 respectively and the intra- and inter-assay coefficients of variation were below 5.8%. Our electrochemical immunosensor showed higher sensitivity and lower time consumed than the standard spectrophotometric detection ELISA method, which shows the potential for assessment of EE2 in river water samples. KW - Enzyme immunoassays KW - Ethinylestradiol KW - Paramagnetic beads KW - Horseradish peroxidase KW - Microfluidic KW - Flow injection analysis PY - 2010 DO - https://doi.org/10.1016/j.bios.2009.10.031 SN - 0956-5663 SN - 1873-4235 VL - 25 IS - 6 SP - 1376 EP - 1381 PB - Elsevier CY - Barking, Essex, UK AN - OPUS4-22188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -