TY - JOUR A1 - Dmitriev, A.I. A1 - Österle, Werner A1 - Wetzel, B. A1 - Zhang, G. T1 - Mesoscale modeling of the mechanical and tribological behavior of a polymer matrix composite based on epoxy and 6 vol.% silica nanoparticles N2 - A model based on movable cellular automata (MCA) is described and applied for simulating the stress–strain and sliding behavior of a nanocomposite consisting of an epoxy matrix and 6 vol.% of homogeneously distributed silica nanoparticles. Tensile tests were used for verification of the model. It was realized that a slight modification of epoxy properties due to the addition of silica nanoparticles had to be taken into account in order to obtain good correlation between experimental and modeling results. On the other hand, sliding simulations revealed no susceptibility of results to slight modifications of matrix properties, but a significant impact of nanoparticles on the interface structure and smoothness of sliding mechanism. Furthermore, assuming both possibilities, bond breaking and rebinding of automata pairs, can explain different friction levels of polymer materials. KW - Nanocomposite KW - Stress–strain behavior KW - Movable cellular automata KW - Sliding simulation KW - Mechanically mixed layer KW - Coefficient of friction PY - 2015 DO - https://doi.org/10.1016/j.commatsci.2015.08.029 SN - 0927-0256 VL - 110 SP - 204 EP - 214 PB - Elsevier CY - Amsterdam AN - OPUS4-34013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, G. A1 - Häusler, Ines A1 - Österle, Werner A1 - Wetzel, B. A1 - Jim, B. T1 - Formation and function mechanisms of nanostructured tribofilms of epoxy-based hybrid nanocomposites N2 - The nanostructures and properties of the tribofilms of epoxy (EP) composites filled with short carbon fibers (SCF) and different volume fractions of monodisperse silica nanoparticles were investigated. When the conventional composite filled only with SCF was considered under a high pv condition, an iron oxide layer is formed on the steel counterface. The addition of even only 0.05 vol% nano-silica leads to a significant change of the tribofilm's structure and the tribological behavior of the composite. With increasing silica content, the oxidation layer on the steel surface is gradually replaced by a silica-based tribofilm. A close relationship between the tribofilms’ structure and the tribological behavior of the composites was identified. Mixing, possible reactions and tribo-sintering of silica nanoparticles with other wear products are deemed to be main mechanisms inducing the formation and the lubricity of the silica-based tribofilm. KW - Polymer-matrix composite KW - Sliding wear KW - Tribofilm KW - Nanoparticles KW - Tribo-sintering PY - 2015 DO - https://doi.org/10.1016/j.wear.2015.08.025 SN - 0043-1648 VL - 342-343 SP - 181 EP - 188 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-34442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Babu, S. S. A1 - Sonnenberg, G. A1 - Schwenk, Christopher A1 - Goldak, J. A1 - Porzner, H. A1 - Khurana, S.P. A1 - Zhang, W. A1 - Gayler, J. T1 - How can computational weld mechanics help industry? KW - Schweißen KW - Simulation KW - Temperatur KW - Verzug KW - Eigenspannungen PY - 2010 SN - 0043-2296 SN - 0096-7629 VL - 89 IS - 1 SP - 40 EP - 45 PB - American Welding Society CY - New York, NY AN - OPUS4-20793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, F. A1 - Ngai, S. A1 - Zhou, X. Y. A1 - Zaiser, E. A1 - Manzoni, Anna Maria A1 - Wu, Y. A1 - Zheng, W. W. A1 - Zhang, P. A1 - Thompson, G. B. T1 - Tracking maze-like hierarchical phase separation behavior in a Fe-Si-V alloy N2 - Optimizing the properties of next-generation high-temperature and corrosion-resistant alloys is rooted in balancing structure-property relationships and phase chemistry. Here, we implement a complementary approach based on transmission electron microscopy (TEM) and atom probe tomography (APT) to ascertain aspects of hierarchical phase separation behavior, by understanding the microstructural evolution and the three-dimensional (3D) nanochemistry of a single crystal Fe79.5Si15.5V5.0 (at%) alloy. A maze-like hierarchical microstructure forms, in which a complex network of metastable disordered α plates (A2 phase) emerges within ordered α1 precipitates (D03 phase). The supersaturation in α1 (D03) precipitates with Fe and V drives the formation of α (A2) plates. The morphology of α (A2) plates is discussed concerning crystal structure, lattice misfit, and elastic strain. Phase compositions and a ternary phase diagram aid the thermodynamic assessment of the hierarchical phase separation mechanism via the Gibbs energy of mixing. A perspective on the stabilization of hierarchical microstructures beyond Fe79.5Si15.5V5.0 is elaborated by comparing hierarchical alloys. We find that the ratio of elastic anisotropy (Zener ratio) serves as a predictor of the hierarchical particles’ morphology. We suggest that the strengthening effect of hierarchical microstructures can be harnessed by improving the temporal and thermal stability of hierarchical particles. This can be achieved through phase-targeted alloying aiming at the hierarchical particles phase by considering the constituents partitioning behavior. Beyond Fe79.5Si15.5V5.0, our results demonstrate a potential pathway for improving the properties of high-temperature structural materials. KW - Atom probe tomography KW - Transmission electron microscopy KW - Hierarchical microstructure KW - Phase separation PY - 2023 DO - https://doi.org/10.1016/j.jallcom.2023.172157 SN - 0925-8388 VL - 968 SP - 1 EP - 17 PB - Elsevier B.V. AN - OPUS4-58343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Josephs, R. A1 - Choteau, T. A1 - Daireaux, A. A1 - Stoppacher, N. A1 - Wielgosz, R. A1 - Davies, S. A1 - do Rego, E. A1 - Wollinger, W. A1 - Garrido, B. A1 - Fernandes, J. A1 - Lima, J. A1 - Oliveira, R. A1 - de Sena, R. A1 - Windust, A. A1 - Huang, T. A1 - Dai, X. A1 - Quan, C. A1 - He, H. A1 - Zhang, W. A1 - Wei, C. A1 - Li, N. A1 - Gao, D. A1 - Liu, Z. A1 - Lo, M. A1 - Wong, W. A1 - Pfeifer, Dietmar A1 - Koch, Matthias A1 - Dorgerloh, Ute A1 - Rothe, Robert A1 - Philipp, Rosemarie A1 - Hanari, N. A1 - Rezali, M. A1 - Arzate, C. A1 - Berenice, M. A1 - Caballero, V. A1 - Osuna, M. A1 - Krylov, A. A1 - Kharitonov, S. A1 - Lopushanskaya, E. A1 - Liu, Q. A1 - Lin, T. A1 - Fernandes-Whaley, M. A1 - Quinn, L. A1 - Nhlapo, N. A1 - Prevoo-Franzsen, D. A1 - Archer, M. A1 - Kim, B. A1 - Baek, S. A1 - Lee, S. A1 - Lee, J. A1 - Marbumrung, S. A1 - Kankaew, P. A1 - Chaorenpornpukdee, K. A1 - Chaipet, T. A1 - Shearman, K. A1 - Gören, A. A1 - Gündüz, S. A1 - Yilmaz, H. A1 - Un, I. A1 - Bilsel, G. A1 - Clarkson, C. A1 - Bedner, M. A1 - Camara, J. A1 - Lang, B. A1 - Lippa, K. A1 - Nelson, M. A1 - Toman, B. A1 - Yu, L. T1 - Mass fraction assignment of folic acid in a high purity material - CCQM-K55.d (Folic acid) Final Report N2 - The comparison required the assignment of the mass fraction of folic acid present as the main component in the comparison sample. Performance in the comparison is representative of a laboratory's measurement capability for the purity assignment of organic compounds of medium structural complexity [molecular weight range 300–500] and high polarity (pKOW < −2). Methods used by the eighteen participating NMIs or DIs were based on a mass balance (summation of impurities) or qNMR approach, or the combination of data obtained using both methods. The qNMR results tended to give slightly lower values for the content of folic acid, albeit with larger associated uncertainties, compared with the results obtained by mass balance procedures. Possible reasons for this divergence are discussed in the report, without reaching a definitive conclusion as to their origin. The comparison demonstrates that for a structurally complex polar organic compound containing a high water content and presenting a number of additional analytical challenges, the assignment of the mass fraction content property value of the main component can reasonably be achieved with an associated relative standard uncertainty in the assigned value of 0.5% KW - CCQM key comparison KW - Purity assessment KW - Folic acid PY - 2018 UR - https://www.bipm.org/utils/common/pdf/final_reports/QM/K55/CCQM-K55.d.pdf DO - https://doi.org/10.1088/0026-1394/55/1A/08013 VL - 55 IS - Technical Supplement, 2018 SP - 08013, 1 EP - 38 PB - Institute of Physics Publishing (IOP) ; Bureau International des Poids et Mesures AN - OPUS4-44999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hachet, G. A1 - Wei, S. A1 - Tehranchi, Ali A1 - Dong, X. A1 - Lestang, J. A1 - Zhang, A. A1 - Sun, B. A1 - Zaefferer, S. A1 - Gault, B. A1 - Ponge, D. A1 - Raabe, D. ED - Tehranchi, Ali T1 - Protection of metal interfaces against hydrogen-assisted cracking N2 - Enabling a hydrogen economy requires the development of materials resistant to hydrogen embrittlement (HE). More than 100 years of research have led to several mechanisms and models describing how hydrogen interacts with lattice defects and leads to mechanical property degradation. However, solutions to protect materials from hydrogen are still scarce. Here, we investigate the role of interstitial solutes in protecting critical crystalline defects sensitive to hydrogen. Ab initio calculations show that boron and carbon in solid solutions at grain boundaries can efficiently prevent hydrogen segregation. We then realized this interface protection concept on martensitic steel, a material strongly prone to HE, by doping the most sensitive interfaces with different concentrations of boron and carbon. These segregations, in addition to stress relaxations, critically reduce the hydrogen ingress by half, leading to an unprecedented resistance against HE. This tailored interstitial segregation strategy can be extended to other metallic materials susceptible to hydrogen-induced interfacial failure. KW - Hydrogen embrittlement KW - interstitial PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-650881 DO - https://doi.org/10.1038/s41467-025-67310-6 SN - 2041-1723 VL - 16 SP - 1 EP - 11 PB - Springer Science and Business Media LLC AN - OPUS4-65088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Teng, Jun A1 - Tang, De-Hui A1 - Zhang, Xiao A1 - Hu, Wei-Hua A1 - Said, Samir A1 - Rohrmann, Rolf G. T1 - Automated modal analysis for tracking structural change during construction and operation phases N2 - The automated modal analysis (AMA) technique has attracted significant interest over the last few years, because it can track variations in modal parameters and has the potential to detect structural changes. In this paper, an improved density-based spatial clustering of applications with noise (DBSCAN) is introduced to clean the abnormal poles in a stabilization diagram. Moreover, the optimal system model order is also discussed to obtain more stable poles. A numerical Simulation and a full-scale experiment of an arch bridge are carried out to validate the effectiveness of the proposed algorithm. Subsequently, the continuous dynamic monitoring system of the bridge and the proposed algorithm are implemented to track the structural changes during the construction phase. Finally, the artificial neural network (ANN) is used to remove the temperature effect on modal frequencies so that a health index can be constructed under operational conditions. KW - Automated Modal Analysis for Tracking Structural Change during Construction and Operation Phases PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-475116 UR - https://www.mdpi.com/1424-8220/19/4/927/pdf DO - https://doi.org/10.3390/s19040927 SN - 1424-8220 VL - 19 IS - 4 SP - 927, 1 EP - 23 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-47511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Bruno, Giovanni A1 - Buffière, J.-Y. A1 - Wegener, T. A1 - Niendorf, T. A1 - Wu, T. A1 - Zhang, X. A1 - Kashaev, N. A1 - Meneghetti, G. A1 - Hrabe, Nik A1 - Madia, Mauro A1 - Werner, Tiago A1 - Hilgenberg, Kai A1 - Koukolikova, M. A1 - Prochazka, R. A1 - Dzugan, J. A1 - Möller, B. A1 - Beretta, S. A1 - Evans, Alexander A1 - Wagener, R. A1 - Schnabel, K. T1 - Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges N2 - This article is an outcome of a workshop on Fatigue of Additive Manufactured Metallic Components jointly organized by the Federal Institute for Materials Research and Testing (BAM) Berlin, Germany and the National Institute of Standards and Technology (NIST) Boulder, CO, U.S.A. The aim of the workshop was a comprehensive discussion of the specific aspects of additively manufactured (AM) components in regard to failure under cyclic loading. Undoubtedly, a better understanding and the further development of approaches for damage tolerant component design of AM parts are among the most significant challenges currently facing the use of these new technologies. This article presents a thorough overview of the workshop discussions. It aims to provide a review of the parameters affecting the damage tolerance of AM parts with special emphasis on the process parameters intrinsic to the AM technologies, the resulting defects and residual stresses. Based on these aspects, concepts for damage tolerant component design for AM are reviewed and critically discussed. KW - Additive manufacturing KW - Fatigue loading KW - Component assessment KW - Damage tolerance KW - Defects KW - Residual stresses PY - 2021 DO - https://doi.org/10.1016/j.pmatsci.2021.100786 SN - 0079-6425 VL - 121 PB - Elsevier CY - Amsterdam AN - OPUS4-51937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Kim, K. J. A1 - Yu, H. A1 - Lee, S. M. A1 - Kwon, J. H. A1 - Ruh, H. A1 - Radnik, Jörg A1 - Archanjo, B. S. A1 - Annese, E. A1 - Damasceno, J. C. A1 - Achete, C. A. A1 - Yao, Y. A1 - Ren, L. A1 - Gao, H. A1 - Windover, D. A1 - Matsuzaki, H. A1 - Azuma, Y. A1 - Zhang, L. A1 - Fujimoto, T. A1 - Jordaan, W. A. A1 - Reed, B. A1 - Shard, A. G. A1 - Cibik, L. A1 - Gollwitzer, C. A1 - Krumrey, M. T1 - Final report of CCQM-K157 for the measurement of the amount of substance of HfO2 expressed as the thickness of nm films N2 - The key comparison CCQM-K157 for the thickness measurement of HfO2 films was performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The aim of CCQM-K157 is to establish the measurement traceability and to ensure the equivalency in the measurement capability of national metrology institutes for the thickness measurement of HfO2 films. In this key comparison, the thicknesses of six HfO2 films with the nominal thickness range from 0.7 nm to 6 nm were compared by x-ray photoelectron spectroscopy (XPS), x-ray reflectometry (XRR), transmission electron microscopy (TEM), spectroscopic ellipsometry (SE) and medium energy ion scattering spectrometry (MEIS). To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - CCQM KW - Thin Films KW - HfO2 KW - thickness KW - XPS PY - 2023 DO - https://doi.org/10.1088/0026-1394/60/1A/08010 VL - 60 SP - 08010 PB - IOP AN - OPUS4-63049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zheng, Y. A1 - Zhang, S. A1 - Ma, J. A1 - Sun, F. A1 - Osenberg, M. A1 - Hilger, A. A1 - Markötter, Henning A1 - Wilde, F. A1 - Manke, I. A1 - Hu, Z. A1 - Cui, G. T1 - Codependent failure mechanisms between cathode and anode in solid state lithium metal batteries: mediated by uneven ion flux N2 - An in-depth understanding of the degradation mechanisms is a prerequisite for developing the nextgeneration all solid-state lithium metal battery (ASSLMB) technology. Herein, synchrotron X-ray computed tomography (SXCT) together with other probing tools and simulation method were employed to rediscover the decaying mechanisms of LiNi0.8Co0.1Mn0.1O2 (NCM)|Li6PS5Cl (LPSCl)|Li ASSLMB. It reveals that the detachment and isolation of NCM particles cause the current focusing on the remaining active regions of cathode. The extent of Li stripping and the likelihood of Li+ plating into LPSCl facing the active NCM particles becomes higher. Besides, the homogeneity of Li stripping/plating is improved by homogenizing the electrochemical reactions at the cathode side by LiZr2(PO4)3 (LZP) coating. These results suggest a codependent failure mechanism between cathode and anode that is mediated by uneven Li ion flux. This work contributes to establish a holistic understanding of the degradation mechanisms in ASSLMBs and opens new opportunities for their further optimization and evelopment. KW - Current density distribution KW - Lithium ion flux KW - Solid-state lithium metal batteries KW - Codependent failure mechanism KW - Cathode deactivation PY - 2023 DO - https://doi.org/10.1016/j.scib.2023.03.021 SN - 2095-9273 VL - 68 IS - 8 SP - 813 EP - 825 PB - Elsevier B.V. AN - OPUS4-57309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -