TY - JOUR A1 - Li, X.Q. A1 - Li, H.M. A1 - Jiao, H. A1 - Guo, Z.H. A1 - Zhang, Q.H. A1 - Kneeteman, L.E. A1 - Lewin, M. A1 - Pires do Rego, E.C. A1 - Leal, R.V. A1 - Violante, F.G.M. A1 - Riedel, Juliane A1 - Koch, Matthias T1 - CCQM Key Comparison track A CCQM-K168: Non-polar analytes in high carbohydrate food matrix: trans-zearalenone in maize powder N2 - Demonstrating competency and equivalence for the measurement capacity of contaminants and nutrients in primary foodstuffs is a priority of the OAWG 10-year strategy for Track A core comparisons. Such measurements have posed significant challenges for reference material producers and calibration service providers. This key comparison (KC), under the topic of “non- polar analyte in high carbohydrate food matrix: trans-Zearalenone (trans-ZEN) in maize powder” , was a sector of the model system selected to align with this class within the OAWG strategy. Evidence of successful participation in formal, relevant international comparisons is needed to demonstrate the Calibration and Measurement Capabilities (CMCs) of national metrology institutes (NMIs) and designated institutes (DIs). 17 NMIs and DIs participated in the Track A KC CCQM- 168 “non-polar analyte in high carbohydrate food matrix: trans-ZEN in maize powder” . Participants were requested to evaluate the mass fraction (μg/kg) of trans-ZEN in maize powder material. Methods like liquid-liquid extraction and SPE were applied in the pre-treatment, and HPLC-MS/MS and HPLC-FLD were used for detection by the participants. The mass fractions for trans-ZEN were in the range of (91.8 to 169) μg/kg with standard uncertainties of (1.5 to 24.7) μg/kg, and corresponding relative standard uncertainties from 1.5% to 14.6%. Two labs, INTI and BAM were excluded from the KCRV evaluation. INTI result was identified as an outlier and confirmed their method had insufficient specificity. For BAM the calibration approach they used does not meet the CIPM traceability requirements. The other 15 labs included in the calculation of the consensus KCRV all agreed within their standard uncertainties. Hierarchical Bayes was used as estimators in calculating KCRV and standard uncertainty. Successful participation in CCQM-K168 demonstrates the measurement capabilities in determining mass fraction of organic compounds, with molecular mass of 100 g/mol to 500 g/mol, having low polarity pKow < -2, in mass fraction range from 1 μg/kg to 1000 μg/kg in a high carbohydrate food matrix. KW - Metrology KW - Quality Assurance KW - Mycotoxin Analysis KW - Sustainable Food Safety PY - 2023 DO - https://doi.org/10.1088/0026-1394/60/1A/08021 VL - 60 IS - 1a SP - 08021 AN - OPUS4-59059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Teng, Jun A1 - Tang, De-Hui A1 - Zhang, Xiao A1 - Hu, Wei-Hua A1 - Said, Samir A1 - Rohrmann, Rolf G. T1 - Automated modal analysis for tracking structural change during construction and operation phases N2 - The automated modal analysis (AMA) technique has attracted significant interest over the last few years, because it can track variations in modal parameters and has the potential to detect structural changes. In this paper, an improved density-based spatial clustering of applications with noise (DBSCAN) is introduced to clean the abnormal poles in a stabilization diagram. Moreover, the optimal system model order is also discussed to obtain more stable poles. A numerical Simulation and a full-scale experiment of an arch bridge are carried out to validate the effectiveness of the proposed algorithm. Subsequently, the continuous dynamic monitoring system of the bridge and the proposed algorithm are implemented to track the structural changes during the construction phase. Finally, the artificial neural network (ANN) is used to remove the temperature effect on modal frequencies so that a health index can be constructed under operational conditions. KW - Automated Modal Analysis for Tracking Structural Change during Construction and Operation Phases PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-475116 UR - https://www.mdpi.com/1424-8220/19/4/927/pdf DO - https://doi.org/10.3390/s19040927 SN - 1424-8220 VL - 19 IS - 4 SP - 927, 1 EP - 23 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-47511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jablonka, Kevin Maik A1 - Ai, Qianxiang A1 - Al-Feghali, Alexander A1 - Badhwar, Shruti A1 - Bocarsly, Joshua D. A1 - Bran, Andres M. A1 - Bringuier, Stefan A1 - Brinson, L. Catherine A1 - Choudhary, Kamal A1 - Circi, Defne A1 - Cox, Sam A1 - de Jong, Wibe A. A1 - Evans, Matthew L. A1 - Gastellu, Nicolas A1 - Genzling, Jerome A1 - Gil, María Victoria A1 - Gupta, Ankur K. A1 - Hong, Zhi A1 - Imran, Alishba A1 - Kruschwitz, Sabine A1 - Labarre, Anne A1 - Lála, Jakub A1 - Liu, Tao A1 - Ma, Steven A1 - Majumdar, Sauradeep A1 - Merz, Garrett W. A1 - Moitessier, Nicolas A1 - Moubarak, Elias A1 - Mouriño, Beatriz A1 - Pelkie, Brenden A1 - Pieler, Michael A1 - Ramos, Mayk Caldas A1 - Ranković, Bojana A1 - Rodriques, Samuel G. A1 - Sanders, Jacob N. A1 - Schwaller, Philippe A1 - Schwarting, Marcus A1 - Shi, Jiale A1 - Smit, Berend A1 - Smith, Ben E. A1 - Van Herck, Joren A1 - Völker, Christoph A1 - Ward, Logan A1 - Warren, Sean A1 - Weiser, Benjamin A1 - Zhang, Sylvester A1 - Zhang, Xiaoqi A1 - Zia, Ghezal Ahmad A1 - Scourtas, Aristana A1 - Schmidt, K. J. A1 - Foster, Ian A1 - White, Andrew D. A1 - Blaiszik, Ben T1 - 14 examples of how LLMs can transform materials science and chemistry: a reflection on a large language model hackathon N2 - Large-language models (LLMs) such as GPT-4 caught the interest of many scientists. Recent studies suggested that these models could be useful in chemistry and materials science. To explore these possibilities, we organized a hackathon. This article chronicles the projects built as part of this hackathon. Participants employed LLMs for various applications, including predicting properties of molecules and materials, designing novel interfaces for tools, extracting knowledge from unstructured data, and developing new educational applications. The diverse topics and the fact that working prototypes could be generated in less than two days highlight that LLMs will profoundly impact the future of our fields. The rich collection of ideas and projects also indicates that the applications of LLMs are not limited to materials science and chemistry but offer potential benefits to a wide range of scientific disciplines. KW - Large Language model KW - Hackathon KW - Concrete KW - Prediction KW - Inverse Design KW - Orchestration PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589961 DO - https://doi.org/10.1039/d3dd00113j VL - 2 IS - 5 SP - 1233 EP - 1250 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -