TY - JOUR A1 - Westwood, S. A1 - Josephs, R. A1 - Choteau, T. A1 - Daireaux, A. A1 - Stoppacher, N. A1 - Wielgosz, R. A1 - Davies, S. A1 - do Rego, E. A1 - Wollinger, W. A1 - Garrido, B. A1 - Fernandes, J. A1 - Lima, J. A1 - Oliveira, R. A1 - de Sena, R. A1 - Windust, A. A1 - Huang, T. A1 - Dai, X. A1 - Quan, C. A1 - He, H. A1 - Zhang, W. A1 - Wei, C. A1 - Li, N. A1 - Gao, D. A1 - Liu, Z. A1 - Lo, M. A1 - Wong, W. A1 - Pfeifer, Dietmar A1 - Koch, Matthias A1 - Dorgerloh, Ute A1 - Rothe, Robert A1 - Philipp, Rosemarie A1 - Hanari, N. A1 - Rezali, M. A1 - Arzate, C. A1 - Berenice, M. A1 - Caballero, V. A1 - Osuna, M. A1 - Krylov, A. A1 - Kharitonov, S. A1 - Lopushanskaya, E. A1 - Liu, Q. A1 - Lin, T. A1 - Fernandes-Whaley, M. A1 - Quinn, L. A1 - Nhlapo, N. A1 - Prevoo-Franzsen, D. A1 - Archer, M. A1 - Kim, B. A1 - Baek, S. A1 - Lee, S. A1 - Lee, J. A1 - Marbumrung, S. A1 - Kankaew, P. A1 - Chaorenpornpukdee, K. A1 - Chaipet, T. A1 - Shearman, K. A1 - Gören, A. A1 - Gündüz, S. A1 - Yilmaz, H. A1 - Un, I. A1 - Bilsel, G. A1 - Clarkson, C. A1 - Bedner, M. A1 - Camara, J. A1 - Lang, B. A1 - Lippa, K. A1 - Nelson, M. A1 - Toman, B. A1 - Yu, L. T1 - Mass fraction assignment of folic acid in a high purity material - CCQM-K55.d (Folic acid) Final Report N2 - The comparison required the assignment of the mass fraction of folic acid present as the main component in the comparison sample. Performance in the comparison is representative of a laboratory's measurement capability for the purity assignment of organic compounds of medium structural complexity [molecular weight range 300–500] and high polarity (pKOW < −2). Methods used by the eighteen participating NMIs or DIs were based on a mass balance (summation of impurities) or qNMR approach, or the combination of data obtained using both methods. The qNMR results tended to give slightly lower values for the content of folic acid, albeit with larger associated uncertainties, compared with the results obtained by mass balance procedures. Possible reasons for this divergence are discussed in the report, without reaching a definitive conclusion as to their origin. The comparison demonstrates that for a structurally complex polar organic compound containing a high water content and presenting a number of additional analytical challenges, the assignment of the mass fraction content property value of the main component can reasonably be achieved with an associated relative standard uncertainty in the assigned value of 0.5% KW - CCQM key comparison KW - Purity assessment KW - Folic acid PY - 2018 UR - https://www.bipm.org/utils/common/pdf/final_reports/QM/K55/CCQM-K55.d.pdf DO - https://doi.org/10.1088/0026-1394/55/1A/08013 VL - 55 IS - Technical Supplement, 2018 SP - 08013, 1 EP - 38 PB - Institute of Physics Publishing (IOP) ; Bureau International des Poids et Mesures AN - OPUS4-44999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Durlo Tambara, Luis Urbano A1 - Lima, G. T. S. A1 - Silvestro, L. A1 - Ruviaro, A. S. A1 - Gleize, P. J. P. A1 - de Azevedo, A. R. G. T1 - Influence of polycarboxylate superplasticizer and calcium sulfoaluminate cement on the rheology, hydration kinetics, and porosity of Portland cement pastes N2 - Binary systems composed of Portland cement (PC) and calcium sulfoaluminate (CSA) cement have stood out for applications requiring high early strengths. Nevertheless, the application of these systems may be limited due to their properties in the fresh state, which requires a better understanding of the rheological behavior of these materials. Thus, this study evaluated the incorporation of different polycarboxylate-based superplasticizer (SP) contents (0.15, 0.20, and 0.25 wt%) on PC and PC-CSA binary cement pastes. Rotational rheometry, isothermal calorimetry, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption and desorption tests to assess the pore size distribution of cement pastes were conducted. While the SP incorporation reduced the dynamic yield stress of PC pastes, it progressively increased the yield stress of PC-CSA systems. The increase in SP content increased the main heat flow peak of PC-CSA pastes, although it did not significantly affect the cumulative heat after 160 h of hydration. FTIR and XRD confirm higher ettringite contents in the binary systems and indicate the presence of carboaluminates phases after 7 d of hydration in both PC and PC-CSA and hemicarboaluminate in PC-CSA pastes. The CSA incorporation reduced the cumulative pore volume by up to 32% compared to PC pastes, while the SP content evaluated did not significantly affect the porosity of PC-CSA pastes. KW - Calcium sulfoaluminate cement KW - Portland cement KW - Superplasticizer KW - Rheology KW - Hydration PY - 2023 DO - https://doi.org/10.1016/j.jobe.2023.106120 SN - 2352-7102 VL - 68 SP - 1 EP - 15 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-57034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Durlo Tambara, Luis Urbano A1 - Matos, P. R. de A1 - Lima, G. T. S. A1 - Silvestro, L. A1 - Rocha, J.C. A1 - Campos, C. E. M. de A1 - Gleize, P. J. P. T1 - Influence of Nanosilica and Superplasticizer Incorporation on the Hydration, Strength, and Microstructure of Calcium Sulfoaluminate Cement Pastes N2 - This study investigated the effect of incorporating three types of nanosilica (NS), two powders, and one colloidal suspension on the hydration, strength, and microstructure of calcium sulfoaluminate (CSA) cement pastes prepared with and without a superplasticizer (SP). X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), and compressive strength tests were performed after 2, 5, and 28 days of hydration. The results showed that both NS powders delayed cement hydration at an early age, which was attributed to particle agglomeration (confirmed by dynamic light scattering). Whereas well-dispersed colloidal NS did not significantly affect the hydration of CSA at the investigated ages. SP incorporation improved the dispersion of CSA cement particles, resulting in a 10% increase in the degree of hydration of ye’elimite at 28 days for the system without NS. Conversely, when the SP was incorporated in NS-containing mixtures, it hindered cement hydration of the systems with powdered NS, but did not significantly affect the cement hydration of the system containing colloidal NS. The SEM images suggested that the SP changed the ettringite morphology, thereby negatively affecting the mechanical strength of the CSA pastes. KW - Calcium sulfoaluminate (CSA) cement KW - Nanosilica (NS) KW - Hydration KW - Microstructure PY - 2023 DO - https://doi.org/10.1061/JMCEE7.MTENG-15570 SN - 0899-1561 VL - 35 IS - 7 SP - 04023216 PB - ASCE AN - OPUS4-57404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -