TY - JOUR A1 - Gallo, Emanuela A1 - Sánchez-Olivares, G. A1 - Schartel, Bernhard T1 - Flame retardancy of starch-based biocomposites - aluminium hydroxide-coconut fiber synergy N2 - The use of coconut fiber (CF) agricultural waste was considered as an environmentally friendly and inexpensive alternative in flame retarded biocomposites. To decrease the high content of aluminum trihydrate (ATH) required, the thermal decomposition (thermogravimetry), flammability [oxygen index (LOI) and UL 94 test] and fire behavior (cone calorimeter) of a combination of CF and ATH were investigated in a commercial blend of thermoplastic starch (TPS) and cellulose derivatives. CF induced some charring activity, slightly decreasing the fire load and burning propensity in cone calorimeter test. ATH decomposes endothermically into water and inorganic residue. Significant fuel dilution as well as a pronounced residual protection layer reduces the fire hazards. Replacing a part of ATH with coconut fibers resulted in improved flame retardancy in terms of ignition, reaction to small flame, and flame-spread characteristics [heat release rate (HRR), fire growth rate (FIGRA), etc.]. The observed ATH and CF synergy opens the door to significant reduction of the ATH contents and thus to interesting flame retarded biocomposites. KW - Biocomposites KW - Flammability KW - Starch KW - Aluminium hydroxide KW - Coconut fiber PY - 2013 SN - 0032-2725 VL - 58 IS - 5 SP - 395 EP - 402 PB - Industrial chemistry research inst CY - Warszawa, Poland AN - OPUS4-28513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sanchez-Olivares, G. A1 - Rabe, Sebastian A1 - Pérez-Chávez, R. A1 - Calderas, F. A1 - Schartel, Bernhard T1 - Industrial-waste agave fibres in flame-retarded thermoplastic starch biocomposites N2 - Flame-retarded biocomposites of thermoplastic starch and natural fibres are successfully processed according to state-of-the-art extrusion and injection moulding. Using agave fibres and henequen fibres recovered from local industrial waste is a convincing contribution to sustainability. A systematically varied set of biocomposites is investigated comprehensively, e.g. electron microscopy is used for characterizing the morphology, rheology for the melt viscosity, tensile and impact resistance for the mechanical properties, thermal analysis for the pyrolysis, UL 94 burning chamber and oxygen index for the flammability, and cone calorimeter for the fire behaviour. Achieving sufficient mechanical properties was not the goal in our pre-competitive study but may be tackled by adding compatibilizer in future. The combination of well-dispersed natural fibres, aluminium diethylphosphinate (AlPi) and a special silicone synergist (Si) is proposed as promising innovative route for V-classified biocomposites. The flame-retardancy modes of action in the gas phase (fuel dilution and flame inhibition) and in the condensed phase (charring, protective layer formation) are discussed in detail, as is the role of combining the ingredients. This work is a convincing proof of principle of how to prepare industrial-waste fibres biocomposites, to apply the synergistic combination of AlPi and Si for future flame-retarded technical polymer materials that are based on renewable resources and compostable. KW - Flame-retardant biocomposites KW - Natural fibre KW - Biopolymer KW - Sustainability KW - Industrial-waste fibres KW - Flammability PY - 2019 DO - https://doi.org/10.1016/j.compositesb.2019.107370 SN - 1359-8368 VL - 177 SP - 107370 PB - Elsevier Ltd. AN - OPUS4-48777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rabe, Sebastian A1 - Sanchez-Olivares, G. A1 - Pérez-Chávez, R. A1 - Schartel, Bernhard ED - Laoutid, F. T1 - Natural Keratin and Coconut Fibres from Industrial Wastes in Flame Retarded Thermoplastic Starch Biocomposites N2 - Natural keratin fibres derived from Mexican tannery waste and coconut fibres from coconut processing waste were used as fillers in commercially available, biodegradable thermoplastic starch-polyester blend to obtain sustainable biocomposites. The morphology, rheological and mechanical properties as well as pyrolysis, flammability and forced flaming combustion behaviour of those biocomposites were investigated. In order to open up new application areas for these Kinds of biocomposites, ammonium polyphosphate (APP) was added as a flame retardant. Extensive flammability and cone calorimeter studies revealed a good flame retardance effect with natural fibres alone and improved effectiveness with the addition of APP. In fact, it was shown that replacing 20 of 30 wt. % of APP with keratin fibres achieved the same effectiveness. In the case of coconut fibres, a synergistic effect led to an even lower heat release rate and total heat evolved due to reinforced char residue. This was confirmed via scanning electron microscopy of the char structure. All in all, these results constitute a good approach towards sustainable and biodegradable fibre reinforced biocomposites with improved flame retardant properties. KW - Biomaterials KW - Biodegradation KW - Calorimetry KW - Composites KW - Flame retardance PY - 2020 SN - 978-3-03928-350-7 SN - 978-3-03928-351-4 SP - 45 EP - 66 PB - MDPI AN - OPUS4-50738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Sanchez-Olivares, G. A1 - Rockel, Daniel A1 - Maldonado-Santoyo, M. A1 - Schartel, Bernhard T1 - Waste not, want not: The use of leather waste in flame retarded EVA N2 - Leather is among the most ancient, widely used materials worldwide. Industrial-scale leather production produces large quantities of organic waste attained during shaving and buffing steps during processing. In this study, leather wastes (LW) are used as fillers in flame retarded polymer composites. LW is investigated as a multifunctional bio-filler that enhances the fire performance of flame retarded poly(ethylene–vinyl acetate) (EVA) containing phosphorus flame retardants (P-FRs) ammonium polyphosphate (APP) or a melamine-encapsulated APP (eAPP). Using LW from tanneries as adjuvants to enhance P-FRs in EVA reduces industrial wastes that otherwise require costly waste management solutions. Materials are characterized multi-methodically via mechanical tests, electron microscopy, rheology, thermogravimetric analysis, evolved gas analysis, and condensed phase FTIR, also reaction-to-small-flames and cone calorimeter tests. EVA containing 10 wt-% LW and 20 wt-% P-FRs achieve 20% reductions in fire loads versus EVA, and up to 10% reduction in effective heats of combustion versus EVA with equal (30 wt-%) P-FR loadings. Enhanced char stabilization of EVA composites with LW and P-FRs lowered peaks of heat release rates up to 53% compared to EVA, and up to 40% compared to equal P-FRs loadings. Synergisms between LW and P-FRs in EVA are quantified. A chemical decomposition mechanism is proposed. KW - Leather waste KW - Tannery industry KW - EVA KW - Fire protection KW - Flame retardancy KW - Charring PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532977 DO - https://doi.org/10.1016/j.matdes.2021.110100 SN - 0264-1275 VL - 210 SP - 1 EP - 16 PB - Elsevier CY - Amsterdam AN - OPUS4-53297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, Sebastian A1 - Sánchez-Olivares, G. A1 - Pérez-Chávez, R. A1 - Schartel, Bernhard T1 - Natural keratin and coconut fibres from industrial wastes in flame retarded thermoplastic starch biocomposites N2 - Natural keratin fibres derived from Mexican tannery waste and coconut fibres from coconut processing waste were used as fillers in commercially available, biodegradable thermoplastic starch-polyester blend to obtain sustainable biocomposites. The morphology, rheological and mechanical properties as well as pyrolysis, flammability and forced flaming combustion behaviour of those biocomposites were investigated. In order to open up new application areas for these kinds of biocomposites, ammonium polyphosphate (APP) was added as a flame retardant. Extensive flammability and cone calorimeter studies revealed a good flame retardance effect with natural fibres alone and improved effectiveness with the addition of APP. In fact, it was shown that replacing 20 of 30 wt. % of APP with keratin fibres achieved the same effectiveness. In the case of coconut fibres, a synergistic effect led to an even lower heat release rate and total heat evolved due to reinforced char residue. This was confirmed via scanning electron microscopy of the char structure. All in all, these results constitute a good approach towards sustainable and biodegradable fibre reinforced biocomposites with improved flame retardant properties. KW - Biomaterials KW - Biodegradable KW - Calorimetry KW - Composites KW - Flame retardance PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472518 DO - https://doi.org/10.3390/ma12030344 SN - 1996-1944 VL - 12 IS - 3 SP - 344, 1 EP - 24 PB - MDPI AN - OPUS4-47251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -