TY - JOUR A1 - Mezera, Marek A1 - Alamri, S. A1 - Hendriks, W. A. P. M. A1 - Hertwig, Andreas A1 - Elert, Anna Maria A1 - Bonse, Jörn A1 - Kunze, T. A1 - Lasagni, A. F. A1 - Römer, G. R. B. E. T1 - Hierarchical micro-/nano-structures on polycarbonate via UV pulsed laser processing N2 - Hierarchical micro/-nanostructures were produced on polycarbonate polymer surfaces by employing a two-step UV-laser processing strategy based on the combination of Direct Laser Interference Patterning (DLIP) of gratings and pillars on the microscale (3 ns, 266 nm, 2 kHz) and subsequently superimposing Laser-induced Periodic Surface Structures (LIPSS; 7–10 ps, 350 nm, 100 kHz) which adds nanoscale surface features. Particular emphasis was laid on the influence of the direction of the laser beam polarization on the morphology of resulting hierarchical surfaces. Scanning electron and atomic force microscopy methods were used for the characterization of the hybrid surface structures. Finite-difference time-domain (FDTD) calculations of the laser intensity distribution on the DLIP structures allowed to address the specific polarization dependence of the LIPSS formation observed in the second processing step. Complementary chemical analyzes by micro-Raman spectroscopy and attenuated total reflection Fourier-transform infrared spectroscopy provided in-depth information on the chemical and structural material modifications and material degradation imposed by the laser processing. It was found that when the linear laser polarization was set perpendicular to the DLIP ridges, LIPSS could be formed on top of various DLIP structures. FDTD calculations showed enhanced optical intensity at the topographic maxima, which can explain the dependency of the morphology of LIPSS on the polarization with respect to the orientation of the DLIP structures. It was also found that the degradation of the polymer was enhanced for increasing accumulated fluence levels. KW - Direct laser interference patterning KW - Laser-induced periodic surface structures (LIPSS) KW - Polycarbonate KW - Hierarchical structures KW - Surface functionalization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509101 DO - https://doi.org/10.3390/nano10061184 SN - 2079-4991 VL - 10(6) IS - Special issue "Laser-generated periodic nanostructures" SP - 1184-1 EP - 1184-19 PB - MDPI CY - Basel AN - OPUS4-50910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mezera, M. A1 - Bonse, Jörn A1 - Römer, G.R.B.E. T1 - Influence of Bulk Temperature on Laser-Induced Periodic Surface Structures on Polycarbonate N2 - In this paper, the influence of the bulk temperature (BT) of Polycarbonate (PC) on the occurrence and growth of Laser-induced Periodic Surface Structures (LIPSS) is studied. Ultrashort UV laser pulses with various laser peak fluence levels F_0 and various numbers of overscans (N_OS) were applied on the surface of pre-heated Polycarbonate at different bulk temperatures. Increased BT leads to a stronger absorption of laser energy by the Polycarbonate. For N_OS < 1000 High Spatial Frequency LIPSS (HSFL), Low Spatial Frequency LIPSS perpendicular (LSFL-I) and parallel (LSFL-II) to the laser polarization were only observed on the rim of the ablated tracks on the surface but not in the center of the tracks. For N_OS ≥ 1000 , it was found that when pre-heating the polymer to a BT close its glass transition temperature (T_g), the laser fluence to achieve similar LIPSS as when processed at room temperature decreases by a factor of two. LSFL types I and II were obtained on PC at a BT close to T_g and their periods and amplitudes were similar to typical values found in the literature. To the best of the author’s knowledge, it is the first time both LSFL types developed simultaneously and consistently on the same sample under equal laser processing parameters. The evolution of LIPSS from HSFL, over LSFL-II to LSFL I, is described, depending on laser peak fluence levels, number of pulses processing the spot and bulk temperature. KW - Laser-induced periodic surface structures (LIPSS) KW - Polycarbonate KW - Bulk temperature KW - Ultrashort laser pulses PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498242 UR - https://www.mdpi.com/2073-4360/11/12/1947 DO - https://doi.org/https://doi.org/10.3390/polym11121947 SN - 2073-4360 VL - 11 IS - 12 SP - 1947 PB - MDPI CY - Basel, Switzerland AN - OPUS4-49824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -