TY - JOUR A1 - Li, X.Q. A1 - Li, H.M. A1 - Jiao, H. A1 - Guo, Z.H. A1 - Zhang, Q.H. A1 - Kneeteman, L.E. A1 - Lewin, M. A1 - Pires do Rego, E.C. A1 - Leal, R.V. A1 - Violante, F.G.M. A1 - Riedel, Juliane A1 - Koch, Matthias T1 - CCQM Key Comparison track A CCQM-K168: Non-polar analytes in high carbohydrate food matrix: trans-zearalenone in maize powder N2 - Demonstrating competency and equivalence for the measurement capacity of contaminants and nutrients in primary foodstuffs is a priority of the OAWG 10-year strategy for Track A core comparisons. Such measurements have posed significant challenges for reference material producers and calibration service providers. This key comparison (KC), under the topic of “non- polar analyte in high carbohydrate food matrix: trans-Zearalenone (trans-ZEN) in maize powder” , was a sector of the model system selected to align with this class within the OAWG strategy. Evidence of successful participation in formal, relevant international comparisons is needed to demonstrate the Calibration and Measurement Capabilities (CMCs) of national metrology institutes (NMIs) and designated institutes (DIs). 17 NMIs and DIs participated in the Track A KC CCQM- 168 “non-polar analyte in high carbohydrate food matrix: trans-ZEN in maize powder” . Participants were requested to evaluate the mass fraction (μg/kg) of trans-ZEN in maize powder material. Methods like liquid-liquid extraction and SPE were applied in the pre-treatment, and HPLC-MS/MS and HPLC-FLD were used for detection by the participants. The mass fractions for trans-ZEN were in the range of (91.8 to 169) μg/kg with standard uncertainties of (1.5 to 24.7) μg/kg, and corresponding relative standard uncertainties from 1.5% to 14.6%. Two labs, INTI and BAM were excluded from the KCRV evaluation. INTI result was identified as an outlier and confirmed their method had insufficient specificity. For BAM the calibration approach they used does not meet the CIPM traceability requirements. The other 15 labs included in the calculation of the consensus KCRV all agreed within their standard uncertainties. Hierarchical Bayes was used as estimators in calculating KCRV and standard uncertainty. Successful participation in CCQM-K168 demonstrates the measurement capabilities in determining mass fraction of organic compounds, with molecular mass of 100 g/mol to 500 g/mol, having low polarity pKow < -2, in mass fraction range from 1 μg/kg to 1000 μg/kg in a high carbohydrate food matrix. KW - Metrology KW - Quality Assurance KW - Mycotoxin Analysis KW - Sustainable Food Safety PY - 2023 DO - https://doi.org/10.1088/0026-1394/60/1A/08021 VL - 60 IS - 1a SP - 08021 AN - OPUS4-59059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paris, O. A1 - Li, C. A1 - Siegel, S. A1 - Weseloh, G. A1 - Emmerling, Franziska A1 - Riesemeier, Heinrich A1 - Erko, A. A1 - Fratzl, P. T1 - A new experimental station for simultaneous X-ray microbeam scanning for small- and wide-angle scattering and fluorescence at BESSY II N2 - A new instrument for simultaneous microbeam small- and wide-angle X-ray scattering and X-ray fluorescence (SAXS/WAXS/XRF) is presented. The instrument is installed at the microfocus beamline at BESSY II and provides a beam of 10 µm size with a flux of about 109 photons s-1. A SAXS resolution up to 500 Å d-spacing and a range of scattering vectors of almost three orders of magnitude are reached by using a large-area high-resolution CCD-based detector for simultaneous SAXS/WAXS. The instrument is particularly suited for scanning SAXS/WAXS/XRF experiments on hierarchically structured biological tissues. The necessary infrastructure, such as a cryo-stream facility and an on-site preparation laboratory for biological specimens, are available. KW - Scanning SAXS KW - Scanning WAXS KW - Microbeam KW - Synchrotron radiation PY - 2007 SN - 0021-8898 SN - 1600-5767 VL - 40 IS - Supplement SP - s466 EP - s470 PB - Blackwell CY - Oxford AN - OPUS4-15049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Han, M. A1 - Chen, C. A1 - Zhao, G. A1 - Li, L. A1 - Yo, B. A1 - Huang, X. A1 - Zhu, Y. T1 - Blind lattice-parameter determination of cubic and tetragonal phases with high accuracy using a single EBSD pattern N2 - The Bravais lattices and their lattice parameters are blindly determined using electron backscatter diffraction (EBSD) patterns of materials with cubic or tetragonal crystal structures. Since the geometric relationships in a single EBSD pattern are overdetermined, the relative errors of determining the lattice parameters as well as the axial ratios are confined to about 0.7 ± 0.4% and 0.07 ± 0.03%, respectively, for ideal simulated EBSD patterns. The accuracy of the crystal orientation determination reaches about 0.06 ± 0.03°. With careful manual band detection, the accuracy of determining lattice parameters from experimental patterns can be as good as from simulated patterns, although the results from simulated patterns are often better than expermental patterns, which are lower quality and contain uncertain systematic errors. The reasonably high accuracy is obtained primarily because the detection of the diffracting-plane traces and zone axes is relatively accurate. The results here demonstrate that the developed procedure based on the EBSD technique presents a reliable tool for crystallographic characterization of the Bravais lattices of unknown phases. KW - EBSD KW - Bravais lattice KW - Lattice parameters KW - Kikuchi pattern PY - 2018 DO - https://doi.org/10.1107/S2053273318010963 SN - 2053-2733 VL - 74 IS - 6 SP - 630 EP - 639 PB - International Union of Crystallography AN - OPUS4-46455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Josephs, R. A1 - Choteau, T. A1 - Daireaux, A. A1 - Stoppacher, N. A1 - Wielgosz, R. A1 - Davies, S. A1 - do Rego, E. A1 - Wollinger, W. A1 - Garrido, B. A1 - Fernandes, J. A1 - Lima, J. A1 - Oliveira, R. A1 - de Sena, R. A1 - Windust, A. A1 - Huang, T. A1 - Dai, X. A1 - Quan, C. A1 - He, H. A1 - Zhang, W. A1 - Wei, C. A1 - Li, N. A1 - Gao, D. A1 - Liu, Z. A1 - Lo, M. A1 - Wong, W. A1 - Pfeifer, Dietmar A1 - Koch, Matthias A1 - Dorgerloh, Ute A1 - Rothe, Robert A1 - Philipp, Rosemarie A1 - Hanari, N. A1 - Rezali, M. A1 - Arzate, C. A1 - Berenice, M. A1 - Caballero, V. A1 - Osuna, M. A1 - Krylov, A. A1 - Kharitonov, S. A1 - Lopushanskaya, E. A1 - Liu, Q. A1 - Lin, T. A1 - Fernandes-Whaley, M. A1 - Quinn, L. A1 - Nhlapo, N. A1 - Prevoo-Franzsen, D. A1 - Archer, M. A1 - Kim, B. A1 - Baek, S. A1 - Lee, S. A1 - Lee, J. A1 - Marbumrung, S. A1 - Kankaew, P. A1 - Chaorenpornpukdee, K. A1 - Chaipet, T. A1 - Shearman, K. A1 - Gören, A. A1 - Gündüz, S. A1 - Yilmaz, H. A1 - Un, I. A1 - Bilsel, G. A1 - Clarkson, C. A1 - Bedner, M. A1 - Camara, J. A1 - Lang, B. A1 - Lippa, K. A1 - Nelson, M. A1 - Toman, B. A1 - Yu, L. T1 - Mass fraction assignment of folic acid in a high purity material - CCQM-K55.d (Folic acid) Final Report N2 - The comparison required the assignment of the mass fraction of folic acid present as the main component in the comparison sample. Performance in the comparison is representative of a laboratory's measurement capability for the purity assignment of organic compounds of medium structural complexity [molecular weight range 300–500] and high polarity (pKOW < −2). Methods used by the eighteen participating NMIs or DIs were based on a mass balance (summation of impurities) or qNMR approach, or the combination of data obtained using both methods. The qNMR results tended to give slightly lower values for the content of folic acid, albeit with larger associated uncertainties, compared with the results obtained by mass balance procedures. Possible reasons for this divergence are discussed in the report, without reaching a definitive conclusion as to their origin. The comparison demonstrates that for a structurally complex polar organic compound containing a high water content and presenting a number of additional analytical challenges, the assignment of the mass fraction content property value of the main component can reasonably be achieved with an associated relative standard uncertainty in the assigned value of 0.5% KW - CCQM key comparison KW - Purity assessment KW - Folic acid PY - 2018 UR - https://www.bipm.org/utils/common/pdf/final_reports/QM/K55/CCQM-K55.d.pdf DO - https://doi.org/10.1088/0026-1394/55/1A/08013 VL - 55 IS - Technical Supplement, 2018 SP - 08013, 1 EP - 38 PB - Institute of Physics Publishing (IOP) ; Bureau International des Poids et Mesures AN - OPUS4-44999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hu, W.-H. A1 - Xu, Z.-M. A1 - Liu, M.-Y. A1 - Tang, D.-H. A1 - Lu, W. A1 - Li, Z.-H. A1 - Teng, J. A1 - Han, X.-H. A1 - Said, Samir A1 - Rohrmann, R. G. T1 - Estimation of the Lateral Dynamic Displacement of High-Rise Buildings underWind Load Based on Fusion of a Remote Sensing Vibrometer and an Inclinometer N2 - This paper proposes a novel method to estimate the lateral displacement of high-rise structures under wind loads. The coefficient β(x) is firstly derived, reflecting the relation between the structural lateral dynamic displacement and the inclination angle at the height x of a structure. If the angle is small, it is the ratio between the structural fundamental mode shape and its first-order derivative without influence of external loads. Several dynamic experiments of structures are performed based on a laser remote sensing vibrometer and an inclinometer, which shows that the fundamental mode is dominated in the structural displacement response under different types of excitations. Once the coefficient β(x) is curve-fitted by measuring both the structural lateral dynamic displacement and the inclination angle synchronously, the real-time structural lateral displacement under operational conditions is estimated by multiplying the coefficient β(x) with the inclination angle. The advantage of the proposed method is that the coefficient β(x) can be identified by lateral dynamic displacement measured in high resolution by the remote sensing vibrometer, which is useful to reconstruct the displacement accurately by the inclination angle under operational conditions KW - Inclination angle KW - High-rise building KW - Lateral dynamic displacement KW - Remote sensing vibrometer PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506833 DO - https://doi.org/10.3390/rs12071120 VL - 12 IS - 7 SP - 1120 PB - MDPI CY - 4052 Basel, Schweiz AN - OPUS4-50683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jiang, C. A1 - Xie, G. A1 - Wu, Dejian A1 - Yan, T. A1 - Chen, S. A1 - Zhao, P. A1 - Wu, Z. A1 - Li, W. T1 - Experimental investigation on an energy-efficient floor heating system with intelligent control: A case study in Chengdu, China N2 - The space heating system accounts for 20%~50% of building energy consumption, and may lead to energy waste due to unreasonable controls. In this study, an energy-efficient floor heating system with intelligent control was proposed to improve energy efficiency of the system. In order to validate the concept of the proposed intelligent control, an experimental system was designed and constructed in Chengdu, China. Temperature, control cycle and energy consumption were then studied under different control strategies. The result shows that a larger flow rate of supply water will result in a longer control cycle and a lower control frequency, i.e., the average control cycle at 7 L min−1 is 1.7 h during the test day, while it is 1.5 h at 5 L min−1. Moreover, adopting water with a higher temperature and flow rate could achieve a higher efficiency of the system. The energy consumptions in case 1 (5 L min−1, 50 °C), case 2 (5 L min−1, 55 °C), case 5 (7 L min−1, 55 °C) and case 6 (7 L min−1, 60 °C) are 4746 kJ, 3534 kJ, 3093 kJ and 3028 kJ, respectively. Based on the experimental data, the supply water temperature is suggested to set lower than 60 °C considering human comfort. KW - Floor heating KW - Intelligent control KW - Experimental KW - Energy consumption KW - Control strategy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550522 DO - https://doi.org/10.1016/j.csite.2021.101094 SN - 2214-157X VL - 26 SP - 1 EP - 14 PB - Elsevier Ltd. AN - OPUS4-55052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hu, W.-H A1 - Tang, D.-H. A1 - Wang, M. A1 - Liu, J.-L. A1 - Li, Z.-H. A1 - Lu, W. A1 - Teng, J. A1 - Said, Samir A1 - Rohrmann, R. G. T1 - Resonance Monitoring of a Horizontal Wind Turbine by Strain-Based Automated Operational Modal Analysis N2 - A strain-based automated operational modal analysis algorithm is proposed to track the long-term dynamic behavior of a horizontal wind turbine under operational conditions. This algorithm is firstly validated by a scaled wind turbine model, and then it is applied to the dynamic strain responses recorded from a 5 MW wind turbine system. We observed variations in the fundamental frequency and 1f, 3f excitation frequencies due to the mass imbalance of the blades and aerodynamic excitation by the tower dam or tower wake. Inspection of the Campbell diagram revealed that the adverse resonance phenomenon and Sommerfeld effect causing excessive vibrations of the wind tower. KW - Strain KW - Automated operational modal analysis KW - Resonance KW - Horizontal wind turbine PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503350 DO - https://doi.org/10.3390/en13030579 VL - 13 IS - 3 SP - 579 EP - 584 PB - MDPI CY - Schweiz, Basel AN - OPUS4-50335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Porta-Velilla, L. A1 - Turan, N. A1 - Cubero, Á. A1 - Shao, W. A1 - Li, H. A1 - de la Fuente, G.F. A1 - Martínez, E. A1 - Larrea, Á. A1 - Castro, M. A1 - Koralay, H. A1 - Çavdar, Ş. A1 - Bonse, Jörn A1 - Angurel, L.A. T1 - Highly Regular Hexagonally-Arranged Nanostructures on Ni-W Alloy Tapes upon Irradiation with Ultrashort UV Laser Pulses N2 - Nickel tungsten alloy tapes (Ni—5 at% W, 10 mm wide, 80 µm thick, biaxially textured) used in second-generation high temperature superconductor (2G-HTS) technology were laser-processed in air with ultraviolet ps-laser pulses (355 nm wavelength, 300 ps pulse duration, 250–800 kHz pulse repetition frequency). By employing optimized surface scan-processing strategies, various laser-generated periodic surface structures were generated on the tapes. Particularly, distinct surface microstructures and nanostructures were formed. These included sub-wavelength-sized highly-regular hexagonally-arranged nano-protrusions, wavelength-sized line-grating-like laser-induced periodic surface structures (LIPSS, ripples), and larger irregular pyramidal microstructures. The induced surface morphology was characterized in depth by electron-based techniques, including scanning electron microscopy (SEM), electron back scatter diffraction (EBSD), cross-sectional transmission electron microscopy (STEM/TEM) and energy dispersive X-ray spectrometry (EDS). The in-depth EBSD crystallographic analyses indicated a significant impact of the material initial grain orientation on the type of surface nanostructure and microstructure formed upon laser irradiation. Special emphasis was laid on high-resolution material analysis of the hexagonally-arranged nano-protrusions. Their formation mechanism is discussed on the basis of the interplay between electromagnetic scattering effects followed by hydrodynamic matter re-organization after the laser exposure. The temperature stability of the hexagonally-arranged nano-protrusion was explored in post-irradiation thermal annealing experiments, in order to qualify their suitability in 2G-HTS fabrication technology with initial steps deposition temperatures in the range of 773–873 K. KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser processing KW - Hexagonally-arranged nano-protrusions KW - Second-generation high temperature superconductor technology KW - Electron microscopy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552551 DO - https://doi.org/10.3390/nano12142380 SN - 2079-4991 VL - 12 IS - 14 SP - 1 EP - 23 PB - MDPI CY - Basel, Switzerland AN - OPUS4-55255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -