TY - CONF A1 - Wolf, Julia A1 - Milmann, Boris A1 - Helmerich, Rosemarie A1 - Köpp, Christian A1 - Mielentz, Frank A1 - Wiggenhauser, Herbert A1 - Kurz, J.H. A1 - Moryson, R.-M. A1 - Samokrutov, A. A1 - Alekhin, S. G. A1 - Alver, Ninel A1 - Sazak, H.-Ö. ED - Xu, Y. L. ED - Zhu, S. ED - Xia, Y. ED - Ni, Y.Q. ED - Law, S.S. ED - Yin, J. H. ED - Su, Z.Q. T1 - Ultrasound based monitoring system for concrete monolithic objects N2 - Ultrasound sensors should be embedded into concrete for monitoring concrete properties. These new longitudinal wave sensors with a center frequency of 60 kHz were examined regarding their suitability for ultrasonic measurements in concrete structures in terms of emission characteristics, sensitivity and frequency ränge. For the measurement of the radiation patterns, the sensors were embedded vertically and horizontally in concrete cylinders. The directivity pattern was measured using a laser vibrometer. The sensitivity of the sensor was determined in water using different sensors of the same type. It shows changes in the signal amplitude as well as variations in the frequency ränge for different transmitter-receiver combinations. The attenuation of the concrete affects the achievable resolution of the measurements and thus, the maximum possible spacing of the sensors within a concrete element. Experimental tests helped optimizing the distances with respect to the required resolution and the effort of embedding the sensors. The signal attenuation in the concrete was measured in the frequency ränge of 60 kHz in response to various degrees of reinforcement and grain size. For this purpose, the sensors were cast at different distances in the specimens studied. The recorded Signals were evaluated for their amplitude and frequency spectrum. T2 - SHMII-6 - 6th International conference on structural health monitoring of intelligent infrastructure CY - Hong Kong, China DA - 09.12.2013 KW - Ultrasound KW - Concrete KW - Monitoring system KW - Ultrasonic network KW - Embedded sensor PY - 2013 SN - 978-962-367-768-4 SP - 1 EP - 6 AN - OPUS4-29642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wolf, Julia A1 - Mielentz, Frank A1 - Milmann, Boris A1 - Helmerich, Rosemarie A1 - Köpp, Christian A1 - Wiggenhauser, Herbert A1 - Kurz, J.H. A1 - Moryson, R.M. A1 - Samokrutov, A. A1 - Alekhin, S. G. A1 - Alver, Ninel A1 - Sazak, H.Ö. T1 - An ultrasound monitoring system for concrete structures N2 - The research project "Ultrasonic Net for Concrete Monitoring (UNeCOM)" aims at developing a methodology for an embedded ultrasonic network for the condition assessment of infrastructure constructions. Civil engineering structures made of concrete, which are located in tectonically active regions or undergo special loading conditions, may require continuous monitoring. It is important to assess the condition of the building and its stability to recognise and classify the effect of a seismic event or evolving damage at early stages before failure occurs. Embedded ultrasonic sensors offer the possibility to detect changes in the material and degradation mechanisms from inside the structure in areas which are difficult or impossible to inspect otherwise. In contrast to conventional ultrasonic testing methods, where the concrete surfaces are scanned with ultrasound probes, this new approach uses sensors, which are embedded into concrete, eliminating the effect of variable coupling conditions between sensors and concrete. This method allows an integral detection of changes in the concrete structure, for example due to seismic activities, to detect mechanical impacts, as well as degradation of the material due to overloading. Such methods have great relevance especially for the monitoring of constructions like power plants, bridges, offshore structures and other structures with high technical safety requirements. The sensor network can be controlled remotely through the internet which is also being used for data transfer. The embedded sensor network is designed to monitor structural damage and concrete degradation globally with high sensitivity. T2 - Istanbul bridge conference 2014 CY - Istanbul, Turkey DA - 11.08.2014 KW - Ultrasound KW - Concrete KW - Monitoring PY - 2014 SN - 978-605-64131-6-2 SP - Paper 32, 1 EP - 9 AN - OPUS4-32028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kaltenbach, A. A1 - Nordmann, J. A1 - Görlitz, V. A1 - Pape, C. A1 - Richter, Silke A1 - Kipphardt, Heinrich A1 - Kopp, G. A1 - Jährling, R. A1 - Rienitz, O. A1 - Güttler, B. T1 - Gravimetric preparation and characterization of primary reference solutions of molybdenum and rhodium N2 - Gravimetrically prepared mono-elemental reference solutions having a well-known mass fraction of approximately 1 g/kg (or a mass concentration of 1 g/L) define the very basis of virtually all measurements in inorganic analysis. Serving as the starting materials of all standard/calibration solutions, they link virtually all measurements of inorganic analytes (regardless of the method applied) to the purity of the solid materials (high-purity metals or salts) they were prepared from. In case these solid materials are characterized comprehensively with respect to their purity, this link also establishes direct metrological traceability to The International System of Units (SI). This, in turn, ensures the comparability of all results on the highest level achievable. Several national metrology institutes (NMIs) and designated institutes (DIs) have been working for nearly two decades in close cooperation with commercial producers on making an increasing number of traceable reference solutions available. Besides the comprehensive characterization of the solid starting materials, dissolving them both loss-free and completely under strict gravimetric control is a challenging problem in the case of several elements like molybdenum and rhodium. Within the framework of the European Metrology Research Programme (EMRP), in the Joint Research Project (JRP) called SIB09 Primary standards for challenging elements, reference solutions of molybdenum and rhodium were prepared directly from the respective metals with a relative expanded uncertainty associated with the mass fraction of Urel(w)<0.05 %. To achieve this, a microwave-assisted digestion procedure for Rh and a hotplate digestion procedure for Mo were developed along with highly accurate and precise inductively coupled plasma optical emission spectrometry (ICP OES) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) methods required to assist with the preparation and as dissemination tools. KW - Digestion KW - Rhodium KW - Molybdenum KW - Reference solution KW - Metrological traceability KW - ICP OES KW - MC-ICP-MS PY - 2015 DO - https://doi.org/10.1007/s00216-014-8395-2 SN - 1618-2642 SN - 1618-2650 VL - 407 IS - 11 SP - 3093 EP - 3102 PB - Springer CY - Berlin AN - OPUS4-33065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Niederleithinger, Ernst A1 - Gardner, S. A1 - Kind, Thomas A1 - Kaiser, R. A1 - Grunwald, Marcel A1 - Yang, G. A1 - Redmer, Bernhard A1 - Waske, Anja A1 - Mielentz, Frank A1 - Effner, Ute A1 - Köpp, Christian A1 - Clarkson, A. A1 - Thompson, F. A1 - Ryan, M. A1 - Mahon, D. T1 - Muon Tomography of the Interior of a Reinforced Concrete Block: First Experimental Proof of Concept N2 - Quality assurance and condition assessment of concrete structures is an important topic world-wide due to the aging infrastructure and increasing traffic demands. Common topics include, but are not limited to, localisation of rebar or tendon ducts, geometrical irregularities, cracks, voids, honeycombing or other flaws. Non-destructive techniques such as ultrasound or radar have found regular, successful practical application but sometimes suffer from limited resolution and accuracy, imaging artefacts or restrictions in detecting certain features. Until the 1980s X-ray transmission was used in case of special demands and showed a much better resolution than other NDT techniques. However, due to safety concerns and cost issues, this method is almost never used anymore. Muon tomography has received much attention recently. Novel detectors for cosmic muons and tomographic imaging algorithms have opened up new fields of application, such as the investigation of freight containers. Muon imaging also has the potential to fill some of the gaps currently existing in concrete NDT. As a first step towards practical use and as a proof of concept we used an existing system to image the interior of a reference reinforced 600 kg concrete block. Even with a yet not optimized setup for this kind of investigation, the muon imaging results are at least of similar quality compared to ultrasonic and radar imaging, potentially even better. The data acquisition takes more time and signals contain more noise, but the images allowed to detect the same important features that are visible in conventional high energy X-ray tomography. In our experiment, we have shown that muon imaging has potential for concrete inspection. The next steps include the development of mobile detectors and optimising acquisition and imaging parameters. KW - Concrete KW - Muon KW - Radar KW - Ultrasound KW - X-ray PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-529974 DO - https://doi.org/10.1007/s10921-021-00797-3 VL - 40 IS - 3 SP - 1 EP - 14 PB - Springer Nature AN - OPUS4-52997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Algernon, D. A1 - Arndt, R.W. A1 - Denzel, W. A1 - Ebsen, B. A1 - Feistkorn, S. A1 - Friese, M. A1 - Große, C.U. A1 - Kathage, S. A1 - Keßler, S. A1 - Köpp, Christian A1 - Küttenbaum, Stefan A1 - Lohse, C. A1 - Maack, Stefan A1 - Niederleithinger, Ernst A1 - Schickert, M. A1 - Schröder, G. A1 - Taffe, A. A1 - Timofeev, Juri A1 - Walther, A. A1 - Wilcke, M. A1 - Wolf, J. A1 - Wöstmann, Jens T1 - Test specimen concepts in regard to quality assurance and validation of nondestructive testing in civil engineering N2 - The process of ensuring reliability of NDT applications contains various aspects, such as determining the performance and probability of success, the uncertainty in measurement, the provision of clear and functional procedures and ensuring the correct application accordingly. Test specimens have become powerful elements in supporting many of these aspects. Within the committee for NDT in Civil Engineering (NDT-CE) of the German Society for Nondestructive Testing (DGZfP), the subcommittee on Quality Assurance (UA-QS) therefore addresses the design and the integration of test specimens in the quality assurance process. Depending on the specific purpose, the requirements on test specimens can vary significantly based on the defined simulated scenario. The most prominent purposes of test specimens might be seen in providing references for inspection systems in regard to function control, calibration and validation. Further aspects can be parametric studies, basic investigation of physical principles related to NDT or a simplified and therefore comprehensive demonstration of inspection concepts (e.g. for teaching purposes). The specific purpose of a test specimen dictates the requirements regarding its conception, including the exact design, the material or the fabrication accuracy and the conditioning. In the development of a general guideline by the UA-QS for application-specific procedures and their validation, the use of test specimens is addressed and specific concepts for the design of test specimens are made. This includes the analysis of the measurement process regarding any given application, deriving an adequate calibration approach for it and designing test specimens (calibration specimens) accordingly. Furthermore, it includes the validation of the procedure taking into account all conditions related to the specific application in the field. The validation requires a statistically sufficient number of trials. Thorough evaluation of each trial can only be established if the ground-truth is known. Therefore, test specimens providing a realistic but controlled simulation of the inspection problem are valuable and indispensable elements in the validation process. The requirement of being fully realistic will often not be possible to fulfill due to practical restrictions. Any aspect that cannot be included in the simulation realistically needs to be simulated conservatively. This again, requires a sufficient understanding of the inspection principle and technique to ensure conservativeness. Among other quality-assurance-related aspects, the UA-QS establishes concepts and guidelines regarding sound and efficient approaches for the specific purposes of test specimens. This subcommittee brings together representatives of different Groups along the entire value chain of NDT-CE, including researchers, practitioners, manufacturers and clients. They all work together in establishing a common understanding and level of quality assurance in the industry. T2 - SMT and NDT-CE 2018 CY - New Brunswick, NJ, USA DA - 27.08.2018 KW - Quality assurance KW - Procedure KW - Reliability KW - Validation KW - Reference specimen PY - 2019 UR - https://asnt.org/smt18papers SN - 978-1-57117-456-7 VL - 11/19 SP - 39 EP - 48 PB - The American Society for Nondestructive Testing, Inc. CY - Columbus, OH, USA AN - OPUS4-47240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Algernon, D. A1 - Arndt, R.W. A1 - Denzel, W. A1 - Ebsen, B. A1 - Feistkorn, S. A1 - Friese, M. A1 - Große, C.U. A1 - Kathage, S. A1 - Keßler, S. A1 - Köpp, Christian A1 - Küttenbaum, Stefan A1 - Lohse, C. A1 - Maack, Stefan A1 - Niederleithinger, Ernst A1 - Schickert, M. A1 - Schröder, G. A1 - Taffe, A. A1 - Timofeev, Juri A1 - Walther, A. A1 - Wilcke, M. A1 - Wolf, J. A1 - Wöstmann, Jens T1 - NDT procedures in relation to quality assurance and validation of nondestructive testing in civil engineering N2 - The field of non-destructive testing of civil structures (NDT-CE) has been continuously growing. Due to the complexity and diversity of civil constructions as well as the heterogeneity of concrete, specific standards or guidelines for the application of modern NDT-CE are still missing. The development of individual solutions is the current approach, which is just as challenging as it is common for NDT-CE. With the increasing development and commercialization of NDT-CE technology, the group of practitioners is growing. To ensure a good level of quality in the industry, it appears necessary to establish adequate means. Naturally, the performance of NDT-CE methods regarding a specific application is strongly dependent on choosing the most suitable inspection technique and applying it correctly, generally referred to as the inspection procedure in the field of NDT. There are well-defined guidelines regarding procedure documentation and handling in many fields of NDT (e.g. nuclear, aerospace or automotive) according to the high importance of procedures in assuring a successful and reliable application. For a long time, this has not always been the case with NDT-CE, which is still considered a unique discipline of NDT. Part of the reason for that might be the young development state of NDTCE, the heterogeneity of building materials like concrete, timber or masonry as a material and the diversity of civil structures. In consequence, NDT-CE procedure development is considered challenging. Among other aspects, addressed in the subcommittee on Quality Assurance (UA-QS) within the committee for NDT-CE of the German Society for Nondestructive Testing (DGZfP), part of its work aims at establishing an adequate basis for NDT-CE procedure development. While some of the highly developed approaches from other industries are taken into consideration, they need to be analyzed regarding their suitability for NDT-CE and adapted accordingly. For a procedure to be as defined as possible, it needs to contain sufficient information, such as the scope and limitations regarding material, geometry and condition of the test object, inspection parameters, calibration, data acquisition, analysis criteria as well as requirements regarding the inspection personnel. For a successful implementation in the field, it is important to define the specific procedure as precisely as possible. Despite the necessity of a great amount of information to be included, the procedure needs to be suitable for efficient field application. The UA-QS is developing a guideline for NDT-CE procedures suitable for application in this field of NDT to ensure correct and reproducible application. To demonstrate and evaluate this concept, specific examples of procedures are also produced. In particular, the UA-QS has developed a procedure for the detection and positioning of tendon ducts using Ground Penetrating Radar (GPR). This procedure is tested regarding the practical applicability in a roundrobin on a defined type of reference test block. T2 - SMT and NDT-CE 2018 CY - New Brunswick, NJ, USA DA - 27.08.2018 KW - Quality assurance KW - Procedure KW - Reliability KW - Validation KW - Reference specimen PY - 2019 UR - https://asnt.org/smt18papers SN - 978-1-57117-456-7 VL - 11/19 SP - 31 EP - 38 PB - The American Society for Nondestructive Testing, Inc. CY - Columbus, OH, USA AN - OPUS4-47239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Maierhofer, Christiane A1 - Köpp, Christian A1 - Binda, L. A1 - Zanzi, L. A1 - Santiago, J.R. A1 - Knupfer, B. A1 - Johansson, B. A1 - Modena, C. A1 - da Porto, F. A1 - Marchisio, M. A1 - Gravina, F. A1 - Falci, M. A1 - Ruiz, J.C.G. A1 - Tomazevic, M. A1 - Bosiljkov, V. A1 - Hennen, C. A1 - Toledo, D.E.L. A1 - Zajc, A. A1 - delli Paoli, S. A1 - Drdácký, M. A1 - Válek, J. T1 - On-site investigation techniques for the structural evaluation of historic masonry buildings, Community research, Project Report EUR 21696 EN, Onsiteformasonry project KW - Non-destructive testing in civil engineering KW - Historic masonry KW - Damage KW - Cultural heritage KW - Complementary methods KW - Structural modelling KW - Guidelines and recommendations PY - 2006 SN - 92-894-9601-0 SP - 1 EP - 141 PB - Office for Official Publications of the European Communities CY - Luxembourg AN - OPUS4-14168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -