TY - JOUR A1 - Garrido, E. A1 - Hernández-Sigüenza, G. A1 - Climent, Estela A1 - Marcos, M. D. A1 - Rurack, Knut A1 - Gaviña, P. A1 - Parra, M. A1 - Sancenón, F. A1 - Martí-Centelles, V. A1 - Martínez-Máñez, R. T1 - Strip-based lateral flow-type indicator displacement assay for γ-hydroxybutyric acid (GHB) detection in beverages N2 - The use of gamma-hydroxybutyric acid (GHB) in drug-facilitated sexual assault has increased due to its availability and high solubility in aqueous solutions and alcoholic beverages, necessitating the development of rapid methods for GHB detection. In this respect, portable testing methods for use in the field, based on lateral flow assays (LFAs) and capable of detecting trace concentrations of target analytes, are particularly attractive and hold enormous potential for the detection of illicit drugs. Using this strategy, here we report a rapid, low cost, easy-to-handle strip-based LFA for GHB analysis employing a smartphone for fluorescence readout. At molecular signalling level, the ensemble is based on a Cu2+ complex with a tetradentate ligand and the fluorescent dye coumarin 343, which indicate GHB through an indicator displacement assay (IDA) in aqueous solution. When incorporated in a LFA-based strip test this system shows a detection limit as low as 0.03 μM for GHB in MES buffer solution and is able to detect GHB at concentrations of 0.1 μM in soft drinks and alcoholic beverages in only 1 min. KW - Indicator displacement assay KW - Gamma-hydroxybutyric acid KW - Lateral flow assay KW - Test strip KW - Fluorescent dyes KW - Smartphone readout PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564631 DO - https://doi.org/10.1016/j.snb.2022.133043 SN - 0925-4005 VL - 377 SP - 1 EP - 7 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-56463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hernandez-Sigüenza, G. A1 - Garrido, E. A1 - Climent, Estela A1 - Marcos, M. D. A1 - Rurack, Knut A1 - Sancenon, F. A1 - Marti-Centelles, V. A1 - Martinez-Manez, R. T1 - Dye-Displacement-Based Test Implemented in Lateral Flow Strips to Prevent GHB Spiking in Alcoholic Beverages N2 - γ-Hydroxybutyric acid (GHB) is a natural metabolite, which is currently used as a date rape drug. Particularly, GHB is rapidly eliminated and its detection in realistic environments is only possible within 6-12 h after ingestion. Owing to the increasing use of GHB for criminal purposes, a need has arisen to develop simple and in situ efficient assays for its identification in aqueous and alcoholic drinks. Based on the above, we report herein an indicator displacement assay (IDA) for GHB detection that consists of a Cu2+ complex with a tetradentate ligand and the fluorescent dye coumarin 343 (IDA probe 1). Firstly, the tetradentate ligand was synthesized by reductive amination of a 1,2-cyclohexyl diamine with 2-quinoline carboxaldehyde. Subsequently, this ligand was reacted with Cu(CF3SO3)2 to obtain the corresponding copper complex, which generates the final sensing ensemble by coordinating with coumarin 343 (IDA probe 1). The sensing mechanism relies on a displacement of coumarin 343 from the sensing ensemble 1 thus restoring its fluorescence, as a consequence of the higher binding constant between GHB and complex, showing a high sensitivity in MES buffer (50 mM, pH 6.0) (detection limit of 0.03 μM). Likewise, system design and optimization led to a straightforward integration into a lateral-flow assay without further treatment or conditioning of the test strips while guaranteeing fast overall assay times of 1 min (Figure 1). In this way, IDA probe 1 was incorporated into a coated PEG-glass fibre (PEG-GF) membrane to obtain a highly robust and sensitive lateral flow assay for GHB detection in spiked alcoholic drinks with a detection limit of 0.1 μM in less than 1 min coupled to smartphone readout. T2 - XVI International Workshop on Sensors and Molecular Recognition CY - Valencia, Spain DA - 06.07.2023 KW - Schnelltest KW - Vor-Ort-Analytik KW - Drogen KW - Farbstoffe KW - Lateral Flow Assay PY - 2023 AN - OPUS4-57942 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -