TY - JOUR A1 - Szczerba, Wojciech A1 - Schott, M. A1 - Riesemeier, Heinrich A1 - Thünemann, Andreas A1 - Kurth, D.G. T1 - Thermally induced structural rearrangement of the Fe(II) coordination geometry in metallo-supramolecular polyelectrolytes N2 - Rigid rod-type metallo-supramolecular coordination polyelectrolytes with Fe(II) centres (Fe-MEPEs) are produced via the self-assembly of the ditopic ligand 1,4-bis(2,2':6',2''-terpyridine-4'-yl)benzene (tpy-ph-tpy) and Fe(II) acetate. Fe-MEPEs exhibit remarkable electrochromic properties; they change colour from blue to transparent when an electric potential is applied. This electrochemical process is generally reversible. The blue colour in the ground state is a result of a metal-to-ligand charge transfer at the Fe(II) centre ion in a quasi-octahedral geometry. When annealed at temperatures above 100 °C, the blue colour turns into green and the formerly reversible electrochromic properties are lost, even after cooling down to room temperature. The thermally induced changes in the Fe(II) coordination sphere are investigated in situ during annealing of a solid Fe-MEPE using X-ray absorption fine structure (XAFS) spectroscopy. The study reveals that the thermally induced transition is not accompanied by a redox process at the Fe(II) centre. From the detailed analysis of the XAFS spectra, the changes are attributed to structural changes in the coordination sphere of the Fe(II) site. In the low temperature state, the Fe(II) ion rests in a quasi-octahedral coordination environment surrounded by six nitrogen atoms of the pyridine rings. The axial Fe–N bond length is 1.94 Å, while the equatorial bond length amounts to 1.98 Å. In the high temperature state, the FeN6-site exhibits a distortion with the axial Fe–N bonds being shortened to 1.88 Å and the equatorial Fe–N bonds being elongated to 2.01 Å. KW - Metallo-supramolecular polyelectrolytes KW - Electrochromism KW - XANES KW - EXAFS KW - Local structure KW - Thermal stability PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-317331 DO - https://doi.org/10.1039/c4cp01187b SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 36 SP - 19694 EP - 19701 PB - The Royal Soc. of Chemistry CY - Cambridge AN - OPUS4-31733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yao, Dongxu A1 - Xia, Y. A1 - Zuo, K.-h. A1 - Zeng, Y.-P. A1 - Jiang, D. A1 - Günster, Jens A1 - Heinrich, J.G. T1 - Gradient porous silicon nitride prepared via vacuum foaming and freeze drying N2 - Gradient porous silicon nitride (Si3N4) was fabricated by a novel vacuum foaming and freeze drying process. Aqueous Si3N4 slurries were foamed at vacuum pressure of 50–90 kPa, the green body was obtained by the freeze drying process, a gradient pore structure with porosities of 72–90% was achieved after pressureless sintering at 1680 °C. The porosity was increased with decreasing vacuum pressure. The pore structure consists of large pores (~100 μm) on top, medium pores (~45 μm) on the wall of the large pores, and small pores (~0.7 μm) in the matrix. Such gradient porous Si3N4 with macro- and micro-pores has potential application as high temperature filters. KW - Silicon nitride KW - Graded PY - 2015 DO - https://doi.org/10.1016/j.matlet.2014.11.067 SN - 0167-577x SN - 1873-4979 VL - 141 SP - 138 EP - 140 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-35177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hu, H.-L. A1 - Zeng, Y.-P. A1 - Xia, Y. A1 - Yao, Dongxu A1 - Zuo, K.-H. A1 - Günster, Jens A1 - Heinrich, J.G. T1 - Rapid fabrication of porous Si3N4/SiC ceramics via nitridation of silicon powder with ZrO2 as catalyst N2 - Porous Si3N4/SiC ceramics were rapidly prepared with Y2O3 as sintering additive and ZrO2 as nitrided catalyst, using Si and SiC as starting powders. Porous Si3N4/SiC ceramics with 5 wt% ZrO2 addition showed a complete nitridation and good mechanical properties (with a high porosity of 34.96%, flexural strength of 150±4.2 MPa, linear shrinkage of 0.02%). It was revealed that the reciprocal formation of ZrO2 and ZrN effectively enhanced nitridation by inhibiting the melting of silicon in micro-regions. KW - D. ZrO2 KW - Rapid nitridation KW - Si3N4/SiC porous ceramics PY - 2014 DO - https://doi.org/10.1016/j.ceramint.2013.11.098 SN - 0272-8842 SN - 1873-3956 VL - 40 IS - 5 SP - 7579 EP - 7582 PB - Ceramurgia CY - Faenza AN - OPUS4-30295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yao, Dongxu A1 - Xia, Y. A1 - Zuo, K.-h. A1 - Jiang, D. A1 - Günster, Jens A1 - Zeng, Y.-P. A1 - Heinrich, J.G. T1 - Porous Si3N4 ceramics prepared via partial nitridation and SHS N2 - Porous Si3N4 ceramics were prepared via partial nitridation and self-propagating high temperature synthesis (SHS) process. Raw Si and additive Y2O3 were mixed and molded under 10 MPa into a compact, the compact was partial nitridation at 1300 °C to form a porous Si/Si3N4, and then it was buried in a Si/Si3N4 bed for SHS to obtain porous Si3N4 with rod-like β-Si3N4 morphology. The processing combined the advantages of the nitridation of Si and SHS with low cost, low shrinkage and time saving. Porous Si3N4 with a porosity of 47%, a strength of 143 MPa were obtained by this method. KW - Si3N4 KW - Strength KW - Porosity PY - 2013 DO - https://doi.org/10.1016/j.jeurceramsoc.2012.08.033 SN - 0955-2219 SN - 1873-619X VL - 33 IS - 2 SP - 371 EP - 374 PB - Elsevier CY - Oxford AN - OPUS4-31282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Colombo, P. A1 - Günster, Jens A1 - Mühler, T. A1 - Heinrich, J.G. T1 - Selective laser densification of lithium aluminosilicate glass ceramic tapes N2 - Tapes, cast by blade deposition of a lithium aluminosilicate glass slurry, were sintered using a YAG-fiber laser, with the aim of finding suitable parameters for an additive manufacturing process based on layer-wise slurry deposition and selective laser densification. The influence of the laser parameters (output power and scan velocity) on the sintering was evaluated, by scanning electron microscopy and by X-ray diffraction, on the basis of the quality of the processed layer. Well densified samples could be obtained only in a small window of values for the output power and the scan velocity. The measurement of the width of a set of single scanned lines allowed also to estimate the minimum resolution of the system along the layer plane. KW - Selective laser sintering (SLS) KW - Laserwise-slurry-deposition (LSD) KW - Glass-ceramic KW - LAS PY - 2013 UR - http://ac.els-cdn.com/S0169433212020168/1-s2.0-S0169433212020168-main.pdf?_tid=4ba0c92c-31d4-11e4-84f1-00000aab0f02&acdnat=1409575040_15d5256291262aca99cc5321374ab879 DO - https://doi.org/10.1016/j.apsusc.2012.11.058 SN - 0169-4332 SN - 1873-5584 VL - 265 SP - 610 EP - 614 PB - North-Holland CY - Amsterdam AN - OPUS4-31283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wirth, Cynthia A1 - Müller, Ralf A1 - Günster, Jens A1 - Mühler, T. A1 - Görke, R. A1 - Heinrich, J.G. T1 - Submicrometer silica spheres generated by laser fuming N2 - The production of agglomerate-free SiO2 particles exhibiting a monomodal distribution of particle sizes of around 300 nm by means of direct laser fuming of micrometric SiO2 powders has been successfully demonstrated. With a 12 kW cw CO2 laser system, a production rate of up to 1 kilogram powder per hour was achieved. Almost ideal spherical amorphous SiO2 particles in a broad particle size distribution between 10 nm and several 100 nm (d50 ≈ 300 nm) were synthesized. Several observations suggest weak agglomeration forces between the particles. A temperature reduction of 200 °C for sintering powder compacts was observed. KW - Laser KW - SiO2 KW - Nanopowder PY - 2013 DO - https://doi.org/10.4416/JCST2012-00033 SN - 2190-9385 N1 - Geburtsname von Wirth, Cynthia: Gomes, C. M. - Birth name of Wirth, Cynthia: Gomes, C. M. VL - 4 IS - 1 SP - 11 EP - 18 PB - Göller CY - Baden-Baden AN - OPUS4-31423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oelgardt, C. A1 - Günster, Jens A1 - Heinrich, J.G. T1 - Characterization of the crystallization behavior of laser-fused transparent microspheres with the eutectic composition Al2O3-Y2O3-ZrO2 (AYZ) N2 - Transparent microspheres with the eutectic composition 65 Al2O3-16 Y2O3-19 ZrO2 (mol%) have been produced by laser fusing with a CO2 laser. The influence of the starting material – not pre-calcined and pre-calcined – as well as the laser power on the resulting microspheres – was investigated. After fabrication, the microspheres were analyzed by means of XRD to quantify the amorphous content of the spheres as well as to identify the residual crystalline phases, with a laser granulometer to measure the particle sizes of the starting material and the resulting microspheres, with DSC to characterize the glass transition temperature and crystallization behavior, and with SEM to investigate the microstructure of the microspheres. The laser-treated materials consist of transparent and opaque beads as well as sintered particles. The amorphous amount in the samples was detected to be ~ 85 %. Based on these results transparent beads were collected and annealed over a range of temperatures to analyze the crystallization behavior. KW - Eutectic ceramics KW - Al2O3-Y2O3-ZrO2 KW - Laser processing KW - Crystallization behavior KW - Microstructure PY - 2011 DO - https://doi.org/10.4416/JCST2011-00010 SN - 2190-9385 VL - 02 IS - 02 SP - 103 EP - 110 PB - Göller CY - Baden-Baden AN - OPUS4-23763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yao, Dongxu A1 - Xia, Y. A1 - Zuo, K.-h. A1 - Jiang, D. A1 - Günster, Jens A1 - Zeng, Y.-P. A1 - Heinrich, J.G. T1 - The effect of fabrication parameters on the mechanical properties of sintered reaction bonded porous Si3N4 ceramics N2 - Porous silicon nitride ceramics were prepared via sintered reaction bonded silicon nitride at 1680 °C. The grain size of nitrided Si3N4 and diameter of post-sintered ß-Si3N4 are controlled by size of raw Si. Porosity of 42.14–46.54% and flexural strength from 141 MPa to 165 MPa were obtained. During post-sintering with nano Y2O3 as sintering additive, nano Y2O3 can promote the formation of small ß-Si3N4 nuclei, but the large amount of ß-Si3N4 (>20%) after nitridation also works as nuclei site for precipitation, in consequence the growth of fine ß-Si3N4 grains is restrained, the length is shortened, and the improvement on flexural strength is minimized. The effect of nano SiC on the refinement of the ß-Si3N4 grains is notable because of the pinning effect, while the effect of nano C on the refinement of the ß-Si3N4 grains is not remarkable due to the carbothermal reaction and increase in viscosity of the liquid phase. KW - Porous ceramics KW - Silicon nitride KW - Reaction bonding KW - Anisotropic grain growth KW - Ceramic PY - 2014 DO - https://doi.org/10.1016/j.jeurceramsoc.2014.06.018 SN - 0955-2219 SN - 1873-619X VL - 34 IS - 15 SP - 3461 EP - 3467 PB - Elsevier CY - Oxford AN - OPUS4-32542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogl, Jochen A1 - Kipphardt, Heinrich A1 - del Rocío Arvizu Torres, M. A1 - Manzano, J.V.L. A1 - Rodrigues, J.M. A1 - de Sena, R.C. A1 - Yim, Y.-H. A1 - Heo, S.W. A1 - Zhou, T. A1 - Turk, G.C. A1 - Winchester, M. A1 - Yu, L. L. A1 - Miura, T. A1 - Methven, B. A1 - Sturgeon, R. A1 - Jährling, R. A1 - Rienitz, O. A1 - Tunc, M. A1 - Can, S.Z. T1 - Final report of the key comparison CCQM-K72: Purity of zinc with respect to six defined metallic analytes N2 - KEY COMPARISON High purity elements can serve as a realization of the SI unit amount of substance for the specific element. Solutions prepared from high purity metals by applying gravimetric preparation and the concept of molar mass are used as 'calibration' solutions in many fields of analytical chemistry and provide the metrological basis in elemental analysis. Since ideal purity does not exist for real materials, the actual purity of the high purity material must be known with a specified uncertainty. As required uncertainties around 10-4 relative on the purity statement are not accessible in almost all cases by a direct measurement of the element in itself, the indirect approach is followed, where all elements excepting the matrix element itself are measured and their sum is subtracted from the value for ideal purity, which is 1 kg/kg. It was the aim of this comparison to demonstrate the capability of national metrology institutes and designated institutes to determine the purity of pure elements. In order to limit the effort within this comparison, only six metallic impurities (Ag, Al, Cd, Cr, Ni, Tl) in the low mg/kg range are considered in a zinc matrix. It has to be underlined here that the task was to measure the purity of zinc based on the determination of six analytes. The task is not trace analysis of specific analytes in zinc. This subtle distinction defines different measurands. The sample, pure Zn, was cut in pieces of cubic geometry for wet chemical analysis or of pin geometry for GDMS analysis and was sent to the participants. The comparison was run under the auspices of the Inorganic analysis Working Group (IAWG) of the CCQM and was piloted by the BAM Federal Institute for Materials Research and Testing, Berlin, Germany. The majority of the participants applied ICP-MS techniques and only two participants used additionally atomic absorption spectrometry. GDMS was used only by one participant. The observed spreads for the measurement results reported by the participants were significantly lower than those of the preceding study CCQM-P107 and were well below the target uncertainty of 30% relative. As a consequence, comparability within the participating laboratories is demonstrated to be established. The individual measurement results, mean values and medians derived were in all cases very consistent with the reference values obtained by IDMS and so the accuracy of the measurement results for the participating laboratories is as well demonstrated to be established. Especially with the results of CCQM-P62 and CCQM-P107 in mind, the outcome of CCQM-K72 can be considered as a big step forward in the community. CCQM is aware of the difference between a characterization based on only six analytes and a complete characterization. Therefore, the pilot study CCQM-P149 has been initiated and already started, which focuses on the fit-for-purpose approaches for the purity determination of metals (here: zinc) to be used as primary standards in elemental analysis. Another follow-up in the form of a pilot study on non-metal impurities is mandatory, because non-metal impurities such as oxygen, nitrogen and sulfur often make up the largest contributions. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - CCQM KW - Metrology KW - Purity PY - 2014 DO - https://doi.org/10.1088/0026-1394/51/1A/08008 SN - 0026-1394 SN - 1681-7575 VL - 51 IS - 1A (Tech.Suppl. 2014) SP - 08008, 1 EP - 40 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-30772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -