TY - JOUR A1 - Galbacs, G. A1 - Keri, A. A1 - Kalomista, I. A1 - Kovacs-Szeles, E. A1 - Gornushkin, Igor B. T1 - Deuterium analysis by inductively coupled plasma mass spectrometry using polyatomic species: An experimental study supported by plasma chemistry modeling N2 - based on the use of the signal from hydrogen-containing polyatomic ions formed in the inductively coupled plasma. Prior to analytical experiments, a theoretical study was performed to assess the concentration of polyatomic species present in an equilibrium Ar-O-D-H plasma, as a function of temperature and stoichiometric composition. It was established that the highest sensitivity and linearity measurement of D concentration in a wide range can be achieved by monitoring the ions of D2 and ArD, at masses 4 and 42, respectively. Results of the calculations are in good agreement with the experiments. Signal stability, spectral interferences, as well as the effect of plasma parameters were also assessed. Under optimized conditions, the limit of detection (LOD) was found to be 3 ppm atom fraction for deuterium when measured as ArD (in calcium and potassium free water), or 78 ppm when measured as D2. The achieved LOD values and the 4 to 5 orders of magnitude dynamic range easily allow the measurement of deuterium concentrations at around or above the natural level, up to nearly 100% (or 1 Mio ppm) in a standard quadrupole ICP-MS instrument. An even better performance is expected from the method in high resolution ICP-MS instruments equipped with low dead volume sample introduction systems KW - ICP MS KW - Deuterium KW - Deuterium enriched water PY - 2020 DO - https://doi.org/10.1016/j.aca.2020.01.011 VL - 1104 SP - 28 EP - 37 PB - Elsevier B.V. AN - OPUS4-50777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gojani, Ardian A1 - Palásti, David J. A1 - Paul, Andrea A1 - Galbács, G. A1 - Gornushkin, Igor B. T1 - Analysis and classification of liquid samples by spatial heterodyne spectroscopy N2 - Spatial heterodyne spectroscopy (SHS) is used for quantitative analysis and classification of liquid samples. SHS is a version of a Michelson interferometer with no moving parts and with diffraction gratings in place of mirrors. The instrument converts frequency-resolved information into spatially resolved one and records it in the form of interferograms. The back-extraction of spectral information is done by the Fast Fourier transform. A SHS instrument is constructed with the resolving power 5000 and spectral range 522 - 593 nm. Two original technical solutions are used as compared to previous SHS instruments: the use of a high frequency diode pumped solid state (DPSS) laser for excitation of Raman spectra and a microscope-based collection system. Raman spectra are excited at 532 nm at the repetition rate 80 kHz. Raman shifts between 330 cm-1 and 1600 cm-1 are measured. A new application of SHS is demonstrated: for the first time it is used for quantitative Raman analysis to determine concentrations of cyclohexane in isopropanol and glycerol in water. Two calibration strategies are employed: univariate based on the construction of a calibration plot and multivariate based on partial least square regression (PLSR). The detection limits for both cyclohexane in isopropanol and glycerol in water are at a 0.5 mass% level. In addition to the Raman-SHS chemical analysis, classification of industrial oils (biodiesel, poly(1-decene), gasoline, heavy oil IFO380, polybutenes, and lubricant) is performed using their Raman-fluorescence spectra and principal component analysis (PCA). The oils are easily discriminated as they show distinct non-overlapping patterns in the space of principal components. KW - Spectroscopy KW - Atomic KW - Laser induced breakdown KW - Lasers PY - 2019 DO - https://doi.org/10.1177/0003702819863847 SN - 1943-3530 VL - 73 IS - 12 SP - 1409 EP - 1419 PB - Sage AN - OPUS4-48599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -