TY - JOUR A1 - Agudo Jácome, Leonardo A1 - Göbenli, G. A1 - Eggeler, G. ED - Göken, M. T1 - Transmission electron microscopy study of the microstructural evolution during high-temperature and low-stress (011) [01-1] shear creep deformation of the superalloy single crystal LEK 94 JF - Journal of Materials Research N2 - The present work describes the shear creep behavior of the superalloy LEK 94 at temperatures between 980 and 1050 °C and shear stresses between 50 and 140 MPa for loading on the macroscopic crystallographic shear system (MCSS) (011)[01-1]. The strain rate versus strain curves show short primary and extended secondary creep regimes. We find an apparent activation energy for creep of Qapp = 466 kJ/mol and a Norton-law stress exponent of n = 6. With scanning transmission electron microscopy, we characterize three material states that differ in temperature, applied stress, and accumulated strain/time. Rafting develops perpendicular to the maximum principal stress direction, gamma channels fill with dislocations, superdislocations cut gamma' particles, and dislocation networks form at gamma/gamma' interfaces. Our findings are in agreement with previous results for high-temperature and low-stress [001] and [110] tensile creep testing, and for shear creep testing of the superalloys CMSX-4 and CMSX-6 on the MCSSs (111)[01-1] and (001)[100]. The parameters that characterize the evolving gamma/gamma' microstructure and the evolving dislocation substructures depend on creep temperature, stress, strain, and time. KW - Dislocations KW - Microstructure KW - Scanning transmission electron microscopy (STEM) KW - Creep KW - Shear test PY - 2017 DO - https://doi.org/10.1557/jmr.2017.336 SN - 0884-2914 SN - 2044-5326 VL - 32 IS - 24 SP - 4491 EP - 4502 PB - Cambridge University Press CY - Cambrigde AN - OPUS4-43756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Brookes, Stephen-Peter A1 - Kühn, Hans-Joachim A1 - Skrotzki, Birgit A1 - Klingelhöffer, Hellmuth A1 - Sievert, Rainer A1 - Pfetzing, J. A1 - Eggeler, G. ED - K. Maruyama, ED - M. Niinomi, ED - S. Akiyama, ED - M. Ikeda, ED - M. Hagiwara, T1 - Axial-torsional thermo-mechanical fatigue of Ti-45 Al-5Nb-0.2B-0.2C T2 - Ti-2007 : science and technology T2 - 11th World Conference on Titianium (JIMIC 5) CY - Kyoto, Japan DA - 2007-06-03 KW - Gamma titanium aluminide KW - Thermo-mechanical fatigue KW - TMF KW - Axial-torsional loadings KW - Microstructure PY - 2007 SN - 978-4-88903-406-6 VL - 1 SP - 679 EP - 682 PB - Japan Institute of Metals CY - Kyoto AN - OPUS4-16669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brookes, Stephen-Peter A1 - Kühn, Hans-Joachim A1 - Skrotzki, Birgit A1 - Klingelhöffer, Hellmuth A1 - Sievert, Rainer A1 - Pfetzing, J. A1 - Peter, D. A1 - Eggeler, G. T1 - Axial-torsional thermomechanical fatigue of a near-gamma TiAl-alloy JF - Materials science and engineering A N2 - The uniaxial, torsional and axial-torsional thermomechanical fatigue (TMF) behavior of the near-γ TiAl-alloy TNB-V5 was investigated. TMF tests were performed at 400-800 °C with mechanical strain amplitudes ranging from 0.15% to 0.7%. The tests were conducted thermomechanically in-phase (IP) and out-of-phase (OP). For the same lifetimes, uniaxial IP tests required the highest strain amplitudes, while OP test conditions were most damaging and needed the lowest strain amplitudes. The Mises equivalent mechanical strain amplitudes of pure torsional tests were found in between uniaxial in-phase and out-of-phase tests for the same lifetimes. The non-proportional multiaxial out-of-phase test showed a lower lifetime at the same equivalent mechanical strain amplitude compared to the other types of tests. The microstructure has been characterized applying electron microscopy and microstructural parameters such as fraction of twinned grains, grain size, lamellar distance and dislocation density have been quantified. KW - Gamma titanium aluminide KW - TNB-V5 KW - Thermomechanical fatigue (TMF) KW - Axial-torsional loading KW - Microstructure PY - 2010 DO - https://doi.org/10.1016/j.msea.2010.03.073 SN - 0921-5093 SN - 1873-4936 VL - 527 IS - 16-17 SP - 3829 EP - 3839 PB - Elsevier CY - Amsterdam AN - OPUS4-21289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -