TY - JOUR A1 - Agudo Jácome, Leonardo A1 - Göbenli, G. A1 - Eggeler, G. ED - Göken, M. T1 - Transmission electron microscopy study of the microstructural evolution during high-temperature and low-stress (011) [01-1] shear creep deformation of the superalloy single crystal LEK 94 N2 - The present work describes the shear creep behavior of the superalloy LEK 94 at temperatures between 980 and 1050 °C and shear stresses between 50 and 140 MPa for loading on the macroscopic crystallographic shear system (MCSS) (011)[01-1]. The strain rate versus strain curves show short primary and extended secondary creep regimes. We find an apparent activation energy for creep of Qapp = 466 kJ/mol and a Norton-law stress exponent of n = 6. With scanning transmission electron microscopy, we characterize three material states that differ in temperature, applied stress, and accumulated strain/time. Rafting develops perpendicular to the maximum principal stress direction, gamma channels fill with dislocations, superdislocations cut gamma' particles, and dislocation networks form at gamma/gamma' interfaces. Our findings are in agreement with previous results for high-temperature and low-stress [001] and [110] tensile creep testing, and for shear creep testing of the superalloys CMSX-4 and CMSX-6 on the MCSSs (111)[01-1] and (001)[100]. The parameters that characterize the evolving gamma/gamma' microstructure and the evolving dislocation substructures depend on creep temperature, stress, strain, and time. KW - Dislocations KW - Microstructure KW - Scanning transmission electron microscopy (STEM) KW - Creep KW - Shear test PY - 2017 DO - https://doi.org/10.1557/jmr.2017.336 SN - 0884-2914 SN - 2044-5326 VL - 32 IS - 24 SP - 4491 EP - 4502 PB - Cambridge University Press CY - Cambrigde AN - OPUS4-43756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eggeler, G. A1 - Wieczorek, N. A1 - Fox, F. A1 - Berglund, S. A1 - Bürger, D. A1 - Dlouhý, A. A1 - Wollgramm, P. A1 - Neuking, K. A1 - Schreuer, J. A1 - Agudo Jácome, Leonardo A1 - Gao, S. A1 - Hartmaier, A. A1 - Laplanche, G. T1 - On shear testing of single crystal Ni-base superalloys N2 - Shear testing can contribute to a better understanding of the plastic deformation of Ni-base superalloy single crystals. In the present study, shear testing is discussed with special emphasis placed on its strengths and weaknesses. Key mechanical and microstructural results which were obtained for the high-temperature (T ≈ 1000 °C) and low-stress (τ ≈ 200 MPa) creep regime are briefly reviewed. New 3D stereo STEM images of dislocation substructures which form during shear creep deformation in this regime are presented. It is then shown which new aspects need to be considered when performing double shear creep testing at lower temperatures (T < 800 °C) and higher stresses (τ > 600 MPa). In this creep regime, the macroscopic crystallographic [11−2](111) shear system deforms significantly faster than the [01−1](111) system. This represents direct mechanical evidence for a new planar fault nucleation scenario, which was recently suggested (Wu et al. in Acta Mater 144:642–655, 2018). The double shear creep specimen geometry inspired a micro-mechanical in-situ shear test specimen. Moreover, the in-situ SEM shear specimen can be FIB micro-machined from prior dendritic and interdendritic regions. Dendritic regions, which have a lower γ′ volume fraction, show a lower critical resolved shear stress. T2 - EuroSuperalloys 2018 CY - Oxford, UK DA - 09.09.2018 KW - Superalloy single crystals KW - Shear testing KW - Creep mechanisms KW - In-situ SEM micro shear deformation KW - Transmission electron microscopy PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-456591 DO - https://doi.org/10.1007/s11661-018-4726-9 SN - 1073-5623 SN - 1543-1940 VL - 49A IS - 9 SP - 3951 EP - 3962 PB - Springer US CY - New York AN - OPUS4-45659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cao, L. A1 - Thome, P. A1 - Agudo Jácome, Leonardo A1 - Somsen, C. A1 - Cailletaud, G. A1 - Eggeler, G. T1 - On the influence of crystallography on creep of circular notched single crystal superalloy specimens N2 - The present work contributes to a better understanding of the effect of stress multiaxiality on the creep behavior of single crystal Ni-base superalloys. For this purpose we studied the creep deformation and rupture behavior of double notched miniature creep tensile specimens loaded in three crystallographic directions [100], [110] and [111] (creep conditions: 950 °C and 400 MPa net section stress). Crystal plasticity finite element method (CPFEM) was used to analyze the creep stress and strain distributions during creep. Double notched specimens have the advantage that when one notch fails, the other is still intact and allows to study a material state which is close to rupture. No notch root cracking was observed, while microstructural damage (pores and micro cracks) were frequently observed in the center of the notch root region. This is in agreement with the FEM results (high axial stress and high hydrostatic stress in the center of the notched specimen). Twinning was observed in the notch regions of [110] and [111] specimens, and <112> {111} twins were detected and analyzed using orientation imaging scanning electron microscopy. The present work shows that high lattice rotations can be detected in SXs after creep fracture, but they are associated with the high strains accumulated in the final rupture event. KW - Single crystal Ni-Base superalloys KW - Double notched creep specimen KW - Stress distribution KW - Lattice rotation KW - Cracks PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506060 DO - https://doi.org/10.1016/j.msea.2020.139255 SN - 0921-5093 VL - 782 SP - 139255 PB - Elsevier B. V. AN - OPUS4-50606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaefer, A. A1 - Wagner, M.F.-X. A1 - Pelegrina, J.L. A1 - Olbricht, Jürgen A1 - Eggeler, G. T1 - Localization events and microstructural evolution in ultra-fine grained NiTi shape memory alloys during thermo-mechanical loading N2 - Subjecting a thin NiTi specimen to uniaxial tension often leads to a localized martensitic transformation: macroscopic transformation bands form and propagate through the specimen, separating it into regions of fully transformed martensite and original austenite. In the present study, the alternating current potential drop (ACPD) technique is used to analyze the change in electrical resistance of ultra-fine grained NiTi wires subjected to a broad range of thermo-mechanical load cases: (i) uniaxial tensile straining at constant temperatures (pseudoelastic deformation); (ii) cooling and heating through the transformation range at constant load (actuator load case); (iii) a combination of mechanical and thermal loading. We monitor the ACPD signals in several zones along the gauge length of specimens, and we demonstrate that a localized type of transformation is a generic feature of pseudoelastic as well as of shape memory deformation. Moreover, the ACPD signals allow to differentiate between temperature-induced martensite (formed during cooling at no or relatively small loads), stress-induced martensite, and reoriented martensite (formed under load at low temperatures). PY - 2010 DO - https://doi.org/10.1002/adem.201000063 SN - 1438-1656 VL - 12 IS - 6 SP - 453 EP - 459 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-28616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Olbricht, Jürgen A1 - Yawny, A. A1 - Pelegrina, J.L. A1 - Eggeler, G. A1 - Yardley, V. A. T1 - Characteristics of the stress-induced formation of R-phase in ultrafine-grained NiTi shape memory wire N2 - The transformation between the cubic B2 and monoclinic B19' phases in ultrafine-grained pseudoelastic NiTi can occur as a two-step process involving the intermediate rhombohedral R-phase. Experimental work using differential scanning calorimetry, electrical resistance measurements and transmission electron microscopy has demonstrated the formation of this intermediate phase during thermal cycling and during mechanical loading. In the present paper, complementary mechanical and thermographic results are presented which allow to further assess the character of the stress-induced R-phase formation. The transformation from B2 to R-phase is demonstrated to occur homogeneously within the gauge length rather than via advancing Lüders-type transition regions as it is the case in the localized transformation from B2 or R-phase to B19'. KW - NiTi shape memory alloys KW - Pseudoelasticity KW - Stress-induced phase transformations KW - Localization KW - R-phase PY - 2013 DO - https://doi.org/10.1016/j.jallcom.2013.06.056 SN - 0925-8388 SN - 1873-4669 VL - 579 SP - 249 EP - 252 PB - Elsevier B.V. AN - OPUS4-28833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Brookes, Stephen-Peter A1 - Kühn, Hans-Joachim A1 - Sievert, Rainer A1 - Klingelhöffer, Hellmuth A1 - Pfetzing, J. A1 - Peter, D. A1 - Eggeler, G. ED - Khan, A.S. ED - Kabirian, F. ED - Liu, J. T1 - Axial-torsional thermo-mechanical fatigue of a near-gamma tial-alloy T2 - Plasticity '12 - 18th International symposium on plasticity and its current applications CY - San Juan, PR, USA DA - 2012-01-03 KW - TMF KW - Multiaxial fatigue KW - Titanium aluminides PY - 2012 SN - 0-9659463-0-4 SP - 187 EP - 189 PB - NEAT Press CY - Fulton, Maryland, USA AN - OPUS4-25325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Olbricht, Jürgen A1 - Yawny, A. A1 - Pelegrina, J.L. A1 - Dlouhy, A. A1 - Eggeler, G. T1 - On the stress-induced formation of R-phase in ultra-fine-grained Ni-Rich NiTi shape memory alloys N2 - Phase transformations in binary ultra-fine-grained (UFG) pseudoelastic NiTi wires were studied in a wide temperature range using mechanical loading/unloading experiments, resistance measurements, differential scanning calorimetry (DSC), thermal infrared imaging, and transmission electron microscopy (TEM). The formation of R-phase can be detected in the mechanical experiments. It is shown that the stress-strain response of the R-phase can be isolated from the overall stress-strain data. The R-phase always forms prior to B19¢ when good pseudoelastic properties are observed. The stress-induced B2 to R-phase transition occurs in a homogeneous manner, contrary to the localized character of the B2/R to B19' transformations. The temperature dependence of the critical stress values for the formation of the martensitic phases shows a Clausius Clapeyron type of behavior with constants close to 6 MPa/K (B19') and 18 MPa/K (R-phase). A stress-temperature map is suggested that summarizes the experimentally observed sequences of elementary transformation/deformation processes. KW - Phase transformation KW - Shape memory KW - Pseudoelasticity KW - NiTi KW - R-phase PY - 2011 DO - https://doi.org/10.1007/s11661-011-0679-y SN - 1073-5623 SN - 1543-1940 VL - 42A IS - 9 SP - 2556 EP - 2574 PB - The Minerals, Metals and Materials Society CY - Warrendale AN - OPUS4-24968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Brookes, Stephen-Peter A1 - Kühn, Hans-Joachim A1 - Skrotzki, Birgit A1 - Klingelhöffer, Hellmuth A1 - Sievert, Rainer A1 - Pfetzing, J. A1 - Eggeler, G. ED - K. Maruyama, ED - M. Niinomi, ED - S. Akiyama, ED - M. Ikeda, ED - M. Hagiwara, T1 - Axial-torsional thermo-mechanical fatigue of Ti-45 Al-5Nb-0.2B-0.2C T2 - 11th World Conference on Titianium (JIMIC 5) CY - Kyoto, Japan DA - 2007-06-03 KW - Gamma titanium aluminide KW - Thermo-mechanical fatigue KW - TMF KW - Axial-torsional loadings KW - Microstructure PY - 2007 SN - 978-4-88903-406-6 VL - 1 SP - 679 EP - 682 PB - Japan Institute of Metals CY - Kyoto AN - OPUS4-16669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Brookes, Stephen-Peter A1 - Kühn, Hans-Joachim A1 - Skrotzki, Birgit A1 - Klingelhöffer, Hellmuth A1 - Sievert, Rainer A1 - Pfetzing, J. A1 - Peter, D. A1 - Eggeler, G. ED - Kim, Young-Won ED - David Morris, ED - Rui Yang, ED - Christoph Leyens, T1 - Axial-torsional thermo-mechanical fatigue of Ti-45 Al-5Nb-0.2B-0.2C T2 - TMS 2008 Annual Meeting & Exhibition, "Structural Aluminides for Elevated Temperatures - Gamma Titanium and Other Metallic Aluminides" CY - New Orleans, Louisiana, USA DA - 2008-03-09 KW - Titanium Aluminide KW - Thermo-mechanical Fatigue KW - Axial-torsional Loading PY - 2008 SN - 978-0-87339-7209 SP - 103 EP - 109 PB - TMS CY - Warrendale, Pa AN - OPUS4-17904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peter, D. A1 - Pfetzing, J. A1 - Wagner, M.F.-X. A1 - Somsen, C. A1 - Pesicka, J. A1 - Skrotzki, Birgit A1 - Eggeler, G. T1 - Quantitative Charakterisierung der Gefüge-Anisotropie einer stranggepressten TiAl-Legierung / Quantitative Characterisation and Microstructural Anisotropy of a Hot-Extruded TiAl Alloy KW - Titanaluminide KW - Mikrostruktur KW - Quantitative Analyse KW - Kriechen KW - Anisotropie PY - 2008 SN - 0032-678X N1 - Sprachen: Deutsch/Englisch - Languages: German/English VL - 45 IS - 5 SP - 210 EP - 224 PB - Hanser CY - München AN - OPUS4-17562 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -