TY - JOUR A1 - Ahmadi, Samim A1 - Thummerer, G. A1 - Breitwieser, S. A1 - Mayr, G. A1 - Lecompagnon, Julien A1 - Burgholzer, P. A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Multi-dimensional reconstruction of internal defects in additively manufactured steel using photothermal super resolution combined with virtual wave based image processing JF - IEEE transactions on industrial informatics N2 - We combine three different approaches to greatly enhance the defect reconstruction ability of active thermographic testing. As experimental approach, laser-based structured illumination is performed in a step-wise manner. As an intermediate signal processing step, the virtual wave concept is used in order to effectively convert the notoriously difficult to solve diffusion-based inverse problem into a somewhat milder wavebased inverse problem. As a final step, a compressed-sensing based optimization procedure is applied which efficiently solves the inverse problem by making advantage of the joint sparsity of multiple blind measurements. To evaluate our proposed processing technique, we investigate an additively manufactured stainless steel sample with eight internal defects. The concerted super resolution approach is compared to conventional thermographic reconstruction techniques and shows an at least four times better spatial resolution. KW - Active thermography KW - Additive manufacturing KW - Stainless steel KW - ADMM KW - Block regularization KW - Internal defects KW - Joint sparsity KW - Laser excitation KW - Multi-dimensional reconstruction KW - Photothermal super resolution KW - Virtual waves PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525330 DO - https://doi.org/10.1109/tii.2021.3054411 SN - 1551-3203 SN - 1941-0050 VL - 17 IS - 11 SP - 7368 EP - 7378 PB - IEEE CY - New York, NY AN - OPUS4-52533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahmadi, Samim A1 - Burgholzer, P. A1 - Jung, P. A1 - Caire, G. A1 - Ziegler, Mathias T1 - Super resolution laser line scanning thermography JF - Optics and Lasers in Engineering N2 - In this paper we propose super resolution measurement and post-processing strategies that can be applied in thermography using laser line scanning. The implementation of these techniques facilitates the separation of two closely spaced defects and avoids the expected deterioration of spatial resolution due to heat diffusion. The experimental studies were performed using a high-power laser as heat source in combination with pulsed thermography measurements (step scanning) or with continuous heating measurements (continuous scanning). Our work shows that laser line step scanning as well as continuous scanning both can be used within our developed super resolution (SR) techniques. Our SR techniques make use of a compressed sensing based algorithm in post- processing, the so-called iterative joint sparsity (IJOSP) approach. The IJOSP method benefits from both - the sparse nature of defects in space as well as from the similarity of each measurement. In addition, we show further methods to improve the reconstruction quality e.g. by simple manipulations in thermal image processing such as by considering the effect of the scanning motion or by using different optimization algorithms within the IJOSP approach. These super resolution image processing methods are discussed so that the advantages and disadvantages of each method can be extracted. Our contribution thus provides new approaches for the implementation of super resolution techniques in laser line scanning thermography and informs about which experimental and post-processing parameters should be chosen to better separate two closely spaced defects. KW - Super resolution KW - Laser thermography KW - Compressed sensing KW - Laser scanning KW - Joint sparsity PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509796 DO - https://doi.org/10.1016/j.optlaseng.2020.106279 SN - 0143-8166 VL - 134 SP - 106279 PB - Elsevier Ltd. AN - OPUS4-50979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -