TY - JOUR A1 - Agostini, G. A1 - Radnik, Jörg T1 - Spectroscopy in Catalysis JF - Catalysts N2 - Knowledge-based catalyst development is always an interaction between preparation, analysis and catalytic testing. Only if these three factors fit together can success be expected. For the analytic side of this triangle, spectroscopic methods play a crucial role. Whereas with diffraction, scattering and microscopy, decisive insights into the structure and morphology of the catalysts can be obtained, spectroscopy produces new knowledge about the chemical nature of the catalyst, e.g., its bonding and valence states. KW - Spectroscopy KW - Catalysis KW - Operando KW - In situ PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506507 DO - https://doi.org/10.3390/catal10040408 VL - 10 IS - 4 SP - 408 PB - MDPI CY - Basel AN - OPUS4-50650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kreft, S. A1 - Radnik, Jörg A1 - Agostini, G. A1 - Pohl, M.-M. A1 - Gericke, E. A1 - Hoell, Armin A1 - Beller, M. A1 - Junge, H. A1 - Wohlrab, S. T1 - Dye activation of heterogeneous Copper(II)-Species for visible light driven hydrogen generation JF - International Journal of Hydrogen Energy N2 - Heterogeneous Cu catalysts are widely used in photocatalytic hydrogen generation. The typical working mode includes the transfer of photo-induced charges from a semiconductor to CuO which itself is reduced to Cu2O to initiate the catalytic cycle. In this contribution a photosensitizer (dye), excited by visible light absorption, was used to transfer an electron to the CuO which after reduction catalyzes the water reduction to hydrogen. Several copper(II)-catalysts on high surface silica were prepared by impregnation or precipitation and applied in photocatalytic water reduction. The best catalyst CuO(Cl0.1)/SiO2, synthesized via incipient wetness impregnation of CuCl2 in MCM-41 and a following precipitation with NaOH, achieved a 6 times higher activity (1702 mmol h-1 g-1) compared to a previously investigated copper system (280 mmol h-1 g-1 for CuI) under the same reaction conditions. All materials were fully characterized by XRD, TEM and N2 sorption and further by magnetic resonance and X-ray methods EPR, ASAXS and XAS. In situ measurements evidenced a reduction of the initial Cu(II)-species, which confirms the (proposed) photocatalytic mechanism. KW - Hydrogen generation KW - CuO nanoparticles KW - Molecular sieves PY - 2019 DO - https://doi.org/10.1016/j.ijhydene.2019.04.006 VL - 44 IS - 53 SP - 28409 EP - 28420 PB - Elsevier Ltd. AN - OPUS4-49350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ha, Q. L. M. A1 - Armbruster, U. A1 - Atia, Hanan A1 - Lund, H. A1 - Agostini, G. A1 - Radnik, Jörg A1 - Vuong, H. T. A1 - Martin, A. T1 - Development of active and stable low nickel content catalysts for dry reforming of methane JF - Catalysts N2 - Methane dry reforming (DRM) was investigated over highly active Ni catalysts with low metal content (2.5wt%) supported on Mg-Al mixed oxide. The aim was to minimize carbon Deposition and metal sites agglomeration on the working catalyst which are known to cause catalyst deactivation. The solids were characterized using N2 adsorption, X-ray diffraction, temperature-programmed reduction, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectroscopy. The results showed that MgO-Al2O3 solid solution phases are obtained when calcining Mg-Al hydrotalcite precursor in the temperature range of 550–800 °C. Such phases contribute to the high activity of catalysts with low Ni content even at low temperature (500 °C). Modifying the catalyst preparation with citric acid significantly slows the coking rate and reduces the size of large octahedrally coordinated NiO-like domains, which may easily agglomerate on the surface during DRM. The most effective Ni catalyst shows a stable DRM course over 60 h at high weight hourly space velocity with very low coke deposition. This is a promising result for considering such catalyst systems for further development of an industrial DRM technology. KW - Dry reforming of methane KW - Carbon dioxide KW - Ni PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-402904 DO - https://doi.org/10.3390/catal7050157 SN - 2073-4344 VL - 7 IS - 5 SP - 157, 1 EP - 157, 17 PB - MDPI AN - OPUS4-40290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -