TY - RPRT A1 - Bedon, C. A1 - C., K. A1 - van Doormaal, A. A1 - Haberacker, C. A1 - Hüsken, Götz A1 - Larcher, M. A1 - Saarenheimo, A. A1 - Solomos, G. A1 - Stolz, A. A1 - Thamie, L. A1 - Valsamos, G. T1 - A comparison of existing standards for testing blast resistant glazing and windows N2 - It is important to protect critical buildings (shopping centres, government buildings and embassies), infrastructure and utilities, train and underground stations against being damaged, destroyed or disrupted by deliberate acts of terrorism, criminal activity and malicious behaviour. Normal regulations and building guidelines do not generally take into account these threats. The introduction of appropriate regulations or guidelines, where deemed necessary, should enhance the resilience of buildings and infrastructure against explosion incidents. In order to protect the built infrastructure, methods are required to quantify the resistance of structural components against explosive loading and to assess the hazards resulting from the failure of an element. The applicable state-of-the-art techniques may include either experimental or numerical methods, or a combination of both. Therefore, the thematic group (TG) on the resistance of structures to explosion effects was formed in order to bring the required expertise together, make it commonly available and to find and define harmonised methods and solutions which can be provided to the decision-makers responsible for critical infrastructure protection. This report discusses the differences between the existing standards for testing blast-resistant glazing and windows and it presents basic recommendations for the future development of the suite of European standards in this area. KW - Building industry KW - Accident prevention KW - Glass industry KW - Explosive KW - Industrial infrastructure KW - Risk prevention KW - Urban infrastructure KW - Terrorism KW - Safety standard KW - Technical standard KW - Research report PY - 2014 SN - 978-92-79-46168-2 DO - https://doi.org/10.2788/361383 SN - 1831-9424 VL - JRC94930 SP - 1 EP - 42 AN - OPUS4-36904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Bedon, C. A1 - C., K. A1 - van Doormaal, A. A1 - Haberacker, C. A1 - Hüsken, Götz A1 - Larcher, M. A1 - Millon, O. A1 - Saarenheimo, A. A1 - Solomos, G. A1 - Stolz, A. A1 - Thamie, L. A1 - Valsamos, G. A1 - Williams, A. T1 - A set of essential requirements towards standardising the numerical simulation of blast-loaded windows and facades N2 - The determination of the blast protection level of laminated glass windows and facades is of crucial importance, and it is normally done by using experimental investigations. In recent years numerical methods have become much more powerful also with respect to this kind of application. This report attempts to give a first idea of a possible standardisation concerning such numerical simulations. Attention is drawn to the representation of the blast loading and of the behaviour of the material of the mentioned products, to the geometrical meshing, as well as to the modelling of the connections of the glass components to the main structure. The need to validate the numerical models against reliable experimental data, some of which are indicated, is underlined. KW - building industry KW - accident prevention KW - glass industry KW - explosive KW - industrial infrastructure KW - risk prevention KW - urban infrastructure KW - safety standard KW - technical standard KW - simulation KW - research report PY - 2015 SN - 978-92-79-57507-5 DO - https://doi.org/doi:10.2788/684747 SN - 1831-9424 SP - 1 EP - 25 AN - OPUS4-36909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüsken, Götz A1 - Wagner, L.-C. A1 - Gluth, Gregor A1 - Pirskawetz, Stephan A1 - Kühne, Hans-Carsten T1 - Application of Steel Fibres in Alkali-Activated Mortars N2 - Alkali-activated materials are ideal for the repair of concrete structures in harsh environmental conditions due to their high durability in chemically aggressive environments. However, slag-based mortars, in particular, are prone to shrinkage and associated cracks. In this respect, the application of steel fibres is one solution to reduce the formation of shrinkage induced cracks and to improve post cracking behaviour of these mortars. This study investigated the influence of two different types of steel fibres on the tensile properties of two alkali-activated mortars. Direct tensile tests and single fibre pull-outs were performed to analyse the determining failure modes both on macro and micro scale. Mechanical testing was accompanied by non-destructive testing methods such as digital image correlation and acoustic emission for a detailed analysis of the fracture process. T2 - 14th International Conference on Local Mechanical Properties CY - Prague, Czech Republic DA - 06.11.2019 KW - Steel fibres KW - Alkali-activated materials KW - Tensile strength KW - Fibre pull-out PY - 2019 AN - OPUS4-49578 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schönsee, Eric A1 - Hüsken, Götz A1 - Jeyifous, Olubunmi Anthony A1 - Mezhov, Alexander A1 - Strangfeld, Christoph T1 - Calculating rheological properties of fresh mortar for additive manufacturing based on experimental, multi-sensor data JF - Advances in science and technology N2 - Additive manufacturing of concrete structures is a novel and emerging technology. Freecontouring in civil engineering, which allows for entirely new designs, is a significant advantage. Inthe future, lower construction costs are expected with increased construction speeds and decreasingrequired materials and workers. However, architects and civil engineers rely on a certain quality ofexecution to fulfil construction standards. Although several techniques and approaches demonstratethe advantages, quality control during printing is highly challenging and rarely applied. Due to thecontinuous mixing process commonly used in 3D concrete printing, it is impossible to exclude varia-tions in the dry mixture or water content, and a test sample cannot be taken as a representative samplefor the whole structure. Although mortar properties vary only locally, a defect in one layer duringprinting could affect the entire integrity of the whole structure . Therefore, real-time process monitor-ing is required to record and document the printing process.At the Bundesanstalt für Materialforschung und -prüfung (BAM) a new test rig for the additive man-ufacturing of concrete is built. The primary purpose is measuring and monitoring the properties of amortar during the printing process.The following study investigates an approach for calculating yield stress and plastic viscosity based onexperimentally recorded pressure data. The calculations assume that fresh mortar behaves as a Bing-ham fluid and that the Buckingham-Reiner-equation is applicable. A test setup consisting of rigid pipeswith integrated pressure sensors at different positions is utilized.Monitoring the printing process with different sensors is crucial for the quality control of an ongoingprocess. T2 - Non-Traditional Cement and Concrete 2023 Conference CY - Brno, Czech Republic DA - 25.06.2023 KW - 3DCP KW - Monitoring KW - Additive manufacturing KW - Rheology KW - Bingham fluid KW - Concrete printing PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598179 DO - https://doi.org/10.4028/p-EV4gPv SN - 1662-0356 VL - 145 SP - 131 EP - 139 PB - Trans Tech Publications CY - Baech AN - OPUS4-59817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Babski, Veronika A1 - Hüsken, Götz A1 - Pirskawetz, Stephan A1 - Ehlers, Noah A1 - Kühne, Hans-Carsten A1 - Brouwers, H.J.H. ED - Fehling, E. ED - Middendorf, B. ED - Thiemicke, J. T1 - Characterisation of Ultra-High Performance Fibre Reinforced Concrete (UHPFC) under tensile loading by acoustic emission and optical deformation analysis T2 - Proceedings of HiPerMat 2016 - 4th International Symposium on Ultra-High Performance Concrete and High Performance Construction Materials Kassel N2 - During the past 20 years, innovative developments in concrete technology have enabled the production of ultra-high performance fibre reinforced concretes (UHPFC) for the protection and preservation of concrete structures. The main characteristics of UHPFC comprise high compressive and flexural strength as well as high ductility compared to normal strength, normal weight concrete (NSC). This paper focuses on the analysis of crack formation and crack propagation in UHPFC under tensile loading under quasistatic conditions by using acoustic emission (AE) and optical deformation analysis (ODA). AE is a non-destructive technique to monitor the development of micro structural damage processes caused by external forces. In this context, AE allows for a continuous monitoring of changes in the microstructure (cracks) over time and the corresponding localisation by appropriate algorithms. The AE measurements were performed along with ODA at the surface of the samples in order to analyse the deformation behaviour of the samples and the crack propagation. For the tests, a UHPFC reference mixture was developed and tested with three different volume percentages of steel fibres (1.0 V.-%, 2.0 V.-%, and 3.0 V.-%). This paper shows that the application of AE is a suitable method to analyse the crack propagation in UHPFC specimens under tensile loading and to localise the crack initiation. Furthermore, insights into the failure mechanism of the fibres are offered by the analysis of the signals of the AE measurements, which allows for a better understanding of UHPFC and its general performance. T2 - 4th International Symposium on Ultra-High Performance Concrete and High Performance Materials (HiPerMat) CY - Kassel, Germany DA - 09.03.2016 KW - UHPFC KW - Tensile loading KW - Acoustic emission KW - Crack formation KW - Optical deformation analysis KW - Crack propagation PY - 2016 SN - 978-3-7376-0094-1 SP - 1 EP - 9 PB - Kassel University Press CY - Kassel AN - OPUS4-36893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercia, G. A1 - Spiesz, P. A1 - Hüsken, Götz A1 - Brouwers, H.J.H. T1 - Chloride intrusion and freeze-thaw resistance of self-compacting concrete with two different nano-SiO2 T2 - 18. Ibausil - Internationale Baustofftagung T2 - 18. Ibausil - Internationale Baustofftagung CY - Weimar, Germany DA - 2012-09-12 KW - Nano-SiO2 KW - Concrete KW - Self compacting KW - Durability KW - Chloride and freeze-thaw KW - Nano-silica PY - 2012 SN - 978-3-00-034075-8 VL - 2 IS - 3.07 SP - 2-0123 - 2-0136 AN - OPUS4-26542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geißler, Peter A1 - Schwarz, Johannes A1 - Cuéllar, Pablo A1 - Hüsken, Götz A1 - Baeßler, Matthias A1 - Kühne, Hans-Carsten A1 - Morrone, C. T1 - Compaction grouting to improve the pile bearing capacity in non-cohesive soil T2 - Proceedings of the Twenty-ninth (2019) International Ocean and Polar Engineering Conference N2 - The aim of an ongoing research project is to develop a design approach for typical offshore driven piles (e.g. Jacket piles) based on the application of injections by compaction grouting directly at the pile shaft. The paper aims to present the results of laboratory and in-situ tests, which reveal the efficiency and the promising potential of the optimised foundation concept for a more economic dimensioning of pile foundations and to increase their bearing capacity in non-cohesive soil at any moment after installation. T2 - Twenty-ninth International Ocean and Polar Engineering Conference CY - Honolulu, HI, USA DA - 16.06.2019 KW - Offshore Pile Foundation KW - Compaction Grouting KW - Grout KW - Injection Sequence KW - Tensile Capacity PY - 2019 SN - 978-1-880653-85-2 SN - 1098-6189 VL - II SP - 2178 EP - 2184 PB - International Society of Offshore and Polar Engineers (ISOPE) CY - Cupertino, California, USA AN - OPUS4-48505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüsken, Götz A1 - Shamsuddoha, Md A1 - Thiele, Marc A1 - Baeßler, Matthias A1 - Kühne, Hans-Carsten T1 - Comparison of cracks formed in scaled grouted connection of offshore energy structures under static and cyclic loads T2 - Proceedings of SMAR 2019 N2 - Global energy consumption will increase in the future necessitating both fossil fuels and renewable energy choices - especially wind energy. Such high energy demand requires installation of offshore energy structures, rigs, platforms and towers, which are susceptible to adverse environmental conditions along with maintenances. Due to their large size and remote locations, cylindrical grouted joints are often adopted between substructure and foundation in these offshore platforms and wind structures such as monopiles. However, these connections are composite structures with exterior sleeve, interior pile and infill mortar. Degradation and settlements were reported inside similar connections, which were installed in last three decades. Besides, grouting in the offshore sites were proven difficult to obtain ideal load bearing capacity. In-situ loading conditions were also found to be affecting the failure mechanism inside such connections. This study aims at characterizing the nature of cracks generated in these grouted connections under both static and cyclic loading. Scaled grouted joints were manufactured using a novel reusable mold, and connections were loaded to failure to visualize the main failure patterns. An assessment between failure under these two types of load is drawn along with comparison to previously available literature. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Grouted connection KW - Crack formation KW - Crack pattern KW - Static load KW - Cyclic load PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-487961 SP - Th.2.A.1-1 EP - Th.2.A.1-9 AN - OPUS4-48796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüsken, Götz A1 - Shamsuddoha, Md A1 - Thiele, Marc A1 - Baeßler, Matthias A1 - Kühne, Hans-Carsten T1 - Comparison of cracks formed in scaled grouted connection of offshore energy structures under static and cyclic loads N2 - Global energy consumption will increase in the future necessitating both fossil fuels and renewable energy choices - especially wind energy. Such high energy demand requires installation of offshore energy structures, rigs, platforms and towers, which are susceptible to adverse environmental conditions along with maintenances. Due to their large size and remote locations, cylindrical grouted joints are often adopted between substructure and foundation in these offshore platforms and wind structures such as monopiles. However, these connections are composite structures with exterior sleeve, interior pile and infill mortar. Degradation and settlements were reported inside similar connections, which were installed in last three decades. Besides, grouting in the offshore sites were proven difficult to obtain ideal load bearing capacity. In-situ loading conditions were also found to be affecting the failure mechanism inside such connections. This study aims at characterizing the nature of cracks generated in these grouted connections under both static and cyclic loading. Scaled grouted joints were manufactured using a novel reusable mold, and connections were loaded to failure to visualize the main failure patterns. An assessment between failure under these two types of load is drawn along with comparison to previously available literature. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Grouted connection KW - Crack formation KW - Crack pattern KW - Static load KW - Cyclic load PY - 2019 AN - OPUS4-48797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nery de Araújo Neto, Gilberto A1 - Hüsken, Götz A1 - Kühne, Hans-Carsten ED - Grantham, Michael ED - Basheer, P. A. Muhammed ED - Magee, Bryan ED - Soutsos, Marios T1 - Design of a cementitious coating system for corrosion protection: Phase 1 binder materials selection T2 - Concrete Solutions 2014 N2 - This paper presents the first results of an ongoing research project on the development of a cementitious thin layer coating system with high resistance against chloride penetration and carbonation. It is intended to display the decision process used for selecting raw materials as well as the conclusions based on test results and theoretical deliberations. In this phase, only the influence of the binder materials was analyzed concerning mechanical properties. The system should enhance the durability of new and old concrete structures exposed to aggressive environments, be based on market available materials and fulfill the requirements of the German guideline for concrete repair (Rili-SIB). T2 - Concrete Solutions 5th International Conference on Concrete Repair CY - Queen’s University Belfast, Northern Ireland, UK DA - 01.09.2014 KW - Concrete repair KW - Durability KW - Chloride penetration KW - Carbonation PY - 2014 SN - 978-1-138-02708-4 SN - 978-1-315-73731-7 DO - https://doi.org/10.1201/b17394-66 SP - Chapter 60, 423 EP - 429 PB - CRC Press AN - OPUS4-40114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -