TY - JOUR A1 - Schönsee, Eric A1 - Hüsken, Götz A1 - Jeyifous, Olubunmi Anthony A1 - Mezhov, Alexander A1 - Strangfeld, Christoph T1 - Calculating rheological properties of fresh mortar for additive manufacturing based on experimental, multi-sensor data N2 - Additive manufacturing of concrete structures is a novel and emerging technology. Freecontouring in civil engineering, which allows for entirely new designs, is a significant advantage. Inthe future, lower construction costs are expected with increased construction speeds and decreasingrequired materials and workers. However, architects and civil engineers rely on a certain quality ofexecution to fulfil construction standards. Although several techniques and approaches demonstratethe advantages, quality control during printing is highly challenging and rarely applied. Due to thecontinuous mixing process commonly used in 3D concrete printing, it is impossible to exclude varia-tions in the dry mixture or water content, and a test sample cannot be taken as a representative samplefor the whole structure. Although mortar properties vary only locally, a defect in one layer duringprinting could affect the entire integrity of the whole structure . Therefore, real-time process monitor-ing is required to record and document the printing process.At the Bundesanstalt für Materialforschung und -prüfung (BAM) a new test rig for the additive man-ufacturing of concrete is built. The primary purpose is measuring and monitoring the properties of amortar during the printing process.The following study investigates an approach for calculating yield stress and plastic viscosity based onexperimentally recorded pressure data. The calculations assume that fresh mortar behaves as a Bing-ham fluid and that the Buckingham-Reiner-equation is applicable. A test setup consisting of rigid pipeswith integrated pressure sensors at different positions is utilized.Monitoring the printing process with different sensors is crucial for the quality control of an ongoingprocess. T2 - Non-Traditional Cement and Concrete 2023 Conference CY - Brno, Czech Republic DA - 25.06.2023 KW - 3DCP KW - Monitoring KW - Additive manufacturing KW - Rheology KW - Bingham fluid KW - Concrete printing PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-598179 SN - 1662-0356 VL - 145 SP - 131 EP - 139 PB - Trans Tech Publications CY - Baech AN - OPUS4-59817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costard, René A1 - Agasty, Amit A1 - Kadoke, Daniel A1 - Kind, Thomas A1 - Hicke, Konstantin A1 - Hüsken, Götz T1 - Charakterisierung der Belastung und Schädigung von Stahlbetonprüfkörpern unter Explosionsbeanspruchung N2 - Zur Bewertung der Widerstandsfähigkeit von Schutzobjekten und Bauteilen gegen Explosionsbeanspruchung führt die Bundesanstalt für Materialforschung und -prüfung (BAM) regelmäßig Sprengversuche im Realmaßstab auf einem Testgelände durch. Solche Versuche sind planungs- und ressourcenintensiv, sodass sie zunehmend durch numerische Simulationen ergänzt bzw. ersetzt werden. Aktuelle Forschungsarbeiten zielen darauf ab, neue Berechnungsmethoden und Materialmodelle zu entwickeln, mit denen die Bestimmung der Bauteilantwort sowie die daraus resultierende Schädigung nach einem Explosionsereignis möglich sind. Zur Validierung solcher Ansätze ist es notwendig, systematische Versuche mit unterschiedlichen Szenarien durchzuführen, bei denen die relevanten Parameter mit Hilfe verschiedener Messmethoden aufgezeichnet werden. T2 - 44. Informationstagung Sprengtechnik CY - Siegen, Germany DA - 14.04.2023 KW - Explosivstoff KW - Explosionswirkung KW - Stahlbeton KW - Faseroptische Sensorik PY - 2023 SN - 0941 - 4584 VL - 45 IS - 2 SP - 11 EP - 14 AN - OPUS4-58109 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pirskawetz, Stephan A1 - Hüsken, Götz A1 - Gründer, Klaus-Peter A1 - Kadoke, Daniel ED - Caspeele, R. ED - Taerwe, L. ED - Frangopol, D. M. T1 - Damage mechanisms analysis of reinforced concrete beams in bending using non-destructive testing N2 - Beams that are loaded in transverse direction are one of the main structural elements used in reinforced concrete structures. Bending beams are used, for example, in bridge girders or joists. The strength related failure modes at maximum loading can be divided into bending and shear failure that could occur with or without indication. Conventional design concepts used in practice for designing structural elements subjected to bending aim at failure modes with sufficient indication (e.g. large deflections or cracks), as it occurs in the case of secondary flexure-compression-failure. These indicators can also be used to identify structural changes of civil infrastructure systems (e.g. bridges) using non-destructive testing methods for Structural Health Monitoring (SHM). However, profound knowledge on the determining failure modes of bending beams is required for the reliable application of structural health monitoring. Therefore, resulting effects of different thermal and mechanical loads on the response of a structure are investigated by means of a bridge demonstrator. The results of this investigation are used for developing a monitoring system. Different non-destructive testing (NDT) methods have been used for analyzing the deformation behavior of a reinforced concrete beam in bending. The suitability of the different measuring techniques will be discussed by means of the obtained experimental results. For this purpose, the deformation behavior of a reinforced concrete beam having a span of 2.75 m was investigated in a four-point bending flexural test at laboratory scale. The focus is on the characterization of determining failure modes by the NDT methods and the comparison with classical measuring techniques (e.g. deformation measurements by displacement transducers). The bending tests have been accompanied by Acoustic Emission analysis (AE), optical deformation measurements using Stereophotogrammetry (SP) and Digital Image Correlation (DIC). The conducted tests have shown that the three-dimensional detection of deformations and resulting strains with optical techniques is beneficial for analyzing the damage mechanism of loaded structures and related crack formation and propagation. Optical techniques can be supplemented by acoustic emission testing which gives detailed information on crack formation and progressing damage. The combination of both techniques offers the application as efficient monitoring system for larger structures. T2 - Sixth International Symposium on Life-Cycle Civil Engineering (IALCCE 2018) CY - Ghent, Belgium DA - 28.10.2018 KW - Concrete Beam KW - Bending KW - Digital Image Correlation KW - Stereophotogrammetry KW - Acoustic Emission Analysis KW - Non-Destructive Testing PY - 2019 SN - 978-1-138-62633-1 SN - 978-1-315-22891-4 SP - 2411 EP - 2417 PB - CRC Press AN - OPUS4-46439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph A1 - Schönsee, Eric A1 - Jeyifous, Olubunni Anthony A1 - Mezhov, Alexander A1 - Hüsken, Götz T1 - Introduction of a monitoring system for Bingham fluids in additive manufacturing with concrete N2 - Freeform additive manufacturing of concrete structures is a rising technology in civil engineering with several fascinating advantages. Nonetheless, to ensure reliability and structural integrity, standards and quality control are required in the future to bring this technology into the market. As the concrete is manufactured continuously, continuous quality control of the printing process is also required, i.e. comprehensive process monitoring. At BAM, a test rig will be installed, enabling the printing of concrete structures with a maximum size of 2 m x 1 m x 1 m (l x w x h). Here, process monitoring is the focus of the test rig. In this study, we show the results of the first pump tests, including the measurement of several parameters such as temperature and pressure along the supply system, i.e. from the concrete pump to the printer head. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Additive manufacturing of concrete KW - Process monitoring KW - Non-destructive testing KW - Bingham fluid PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-556367 SP - 1 EP - 12 AN - OPUS4-55636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hicke, Konstantin A1 - Chruscicki, Sebastian A1 - Breithaupt, Mathias A1 - Costard, René A1 - Kind, Thomas A1 - Hüsken, Götz A1 - Agasty, Amit T1 - Measuring Dynamic Behavior and Damage Evolution of a Reinforced Concrete Wall Subjected to Explosive Blasts using Embedded Distributed Fiber Optic Sensors N2 - Results from highly dynamic and static strain measurements, respectively, using embedded distributed fiber optic sensors in a steel-reinforced concrete wall under explosive blast-loading are presented, detailing the structure’s dynamic behavior and the evolutions of cracks. T2 - 28th International Conference on Optical Fiber Sensors (OFS-28) CY - Hamamatsu, Japan DA - 20.11.2023 KW - Distributed acoustic sensing KW - DAS KW - Structural response KW - Blast experiment KW - Embedded fiber optic sensor PY - 2023 SP - 1 EP - 4 PB - Optica CY - Washington D.C., USA AN - OPUS4-59096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hüsken, Götz A1 - Shamsuddoha, Md A1 - Pirskawetz, Stephan A1 - Hofmann, Detlef A1 - Baeßler, Matthias A1 - Kühne, Hans-Carsten T1 - Potential of a Repair System for Grouted Connections in Offshore Structures: Development and Experimental Verification N2 - Grouted connections are intensively used in offshore rigs, platforms as well as jacket and monopile offshore wind turbine structures. Being located in remote offshore conditions, these connections can experience considerable adverse loading during their lifetimes. Degradation was reported inside similar connections, which were installed in the last three decades. Grouting in the offshore sites may often be proven difficult, which eventually leads to reduced load-bearing capacity of connections in the long run. Thus, repair and rehabilitation of such connections should be planned ahead to minimize operational delays and costs. In this study, scaled grouted connections were manufactured using a novel mould, whose integrity were monitored using digital image correlation (DIC). The connections were loaded under static load to visualize the main failure pattern using distributed fibre optic sensors and acoustic emission (AE) analysis. Grouted connections were then repaired using a cementitious injectable grout. The effectiveness of the grout injection was monitored using dye penetration technique. Finally, specimens are reloaded to identify the potential of such repair for grouted connections. KW - Offshore KW - Grouted connection KW - Fibre optic sensors KW - Acoustic emission analysis KW - Cracks KW - Repair KW - Rehabilitation KW - Static loading PY - 2021 U6 - https://doi.org/10.1016/j.marstruc.2021.102934 VL - 77 SP - 102934 PB - Elsevier Ltd. AN - OPUS4-52059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hüsken, Götz A1 - Pirskawetz, Stephan A1 - Hofmann, Detlef A1 - Basedau, Frank A1 - Gründer, Klaus-Peter A1 - Kadoke, Daniel T1 - The load-bearing behaviour of a reinforced concrete beam investigated by optical measuring techniques N2 - Bending beams and slabs are typical examples for structural elements used for reinforced concrete structures such as bridge girders, T-beams and bridge decks. Their strength related failure modes at maximum loading can be divided into bending and shear failure. The failure of beams loaded in bending can occur with or without indication. Therefore, conventional design concepts aim on failure modes with sufficient indication (e.g. large deflections or cracks), as it occurs in the case of secondary flexural compression failure. These indicating factors can also be used for Structural Health Monitoring (SHM) of civil infrastructure systems (e.g. bridges) to identify structural changes. In this context, non-destructive testing (NDT) methods offer different techniques for measuring deflections or crack formation and opening. However, profound knowledge on the determining failure modes of bending beams and their detection by NDT methods is required for the reliable application of SHM. Different NDT methods have been used in this study for analysing the load-bearing behaviour of a reinforced concrete beam in bending. The different measuring techniques are briefly described and their applicability is discussed by means of experimental results. For this purpose, the load-bearing behaviour of a reinforced concrete beam having a span of 2.75 m was investigated in a four-point bending flexural test at laboratory scale. The focus is on the characterization of determining failure modes by optical NDT and the comparison with classical measuring techniques (e.g. deformation measurements by displacement transducers). The bending beam was equipped with two single-mode (SM) sensor fibres. One fibre served as Distributed Optical Fibre Sensor (DOFS), whereas the other fibre contained Fibre Bragg Grating (FBG) sensors. In addition, optical deformation measurements using Digital Image Correlation (DIC) and Stereophotogrammetry (SP) were conducted. KW - Concrete beam KW - Bending KW - Digital image correlation KW - Stereophotogrammetry KW - Distributed fibre optic sensor KW - Fibre bragg grating PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-524762 VL - 54 IS - 3 SP - Article 102 PB - Springer AN - OPUS4-52476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -