TY - CONF A1 - Pirskawetz, Stephan A1 - Hüsken, Götz A1 - Gründer, Klaus-Peter A1 - Kadoke, Daniel ED - Bohse, Jürgen ED - Purschke, Matthias T1 - Analyse der Schadensmechanismen biegebeanspruchter Stahlbetonbalken mittels zerstörungsfreier Prüftechniken N2 - Der durch Kräfte senkrecht zur Stabachse belastete Balken ist eines der Haupttragelemente des Stahlbetonbaus. Biegebalken finden unter anderem Anwendung in Form von Brückenträgern oder Unterzügen. Die bei maximaler Beanspruchung auftretenden Versagensformen unterteilen sich dabei in Biege- und Querkraftversagen (Schubversagen). Ein Versagen des Balkens kann je nach Versagensmechanismus mit oder ohne Vorankündigung erfolgen. Gebräuchliche Bemessungskonzepte der Baupraxis zur Dimensionierung entsprechender Tragelemente zielen auf ein Versagen mit ausreichender Vorankündigung (große Verformungen oder breite Risse) ab, wie es z.B. beim sekundären Biegedruckversagen entsteht. Für die Zustandsüberwachung von Bauwerken (z.B. Brücken) mittels zerstörungsfreier Prüftechniken sind fundierte Kenntnisse zu den bei Biegebeanspruchung auftretenden Schadensmechanismen erforderlich. Im Rahmen eines BAM-internen Projektes sollen durch praxisnahe Untersuchungen an einer brückenähnlichen Referenzstruktur unterschiedliche auf das Tragwerk einwirkende thermische und mechanische Belastungen untersucht werden und in die Entwicklung eines Monitoringsystems einfließen. Anhand der aus Biegeversuchen vorliegenden Ergebnisse wird der Einsatz unterschiedlicher Methoden der zerstörungsfreien Materialprüfung gezeigt und deren Anwendbarkeit für die Analyse des Verformungsverhaltens von Stahlbetonbalken diskutiert. Hierzu wurde das Verformungsverhalten eines Stahlbetonbalkens (L = 2,75 m) in einem Vierpunkt-Biegeversuch im Labormaßstab untersucht. Das Hauptaugenmerk liegt dabei auf der Charakterisierung der ausschlaggebenden Versagensmodi durch die einzelnen zerstörungsfreien Prüfverfahren und der Vergleich zu klassischen Messmethoden (z.B. Verformungsmessung mittels induktiver Wegaufnehmer (IWA)). Die Biegeversuche wurden dazu durch Schallemissionsanalyse (SEA) und optische Verformungsanalyse mittels Stereo-Fotogrammetrie (SF) und Bildkorrelationsverfahren (BKV) begleitet. T2 - 21. Kolloquium Schallemission CY - Fulda, Germany DA - 09.03.2017 KW - Optische Verformungsanalyse KW - Rissbildung KW - Schallemission KW - Stahlbeton KW - Tragverhalten bei Biegebeanspruchung PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-393617 SN - 978-3-940283-82-5 VL - 59 SP - 1 EP - 10 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-39361 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüsken, Götz A1 - Wagner, L.-C. A1 - Gluth, Gregor A1 - Pirskawetz, Stephan A1 - Kühne, Hans-Carsten T1 - Application of Steel Fibres in Alkali-Activated Mortars N2 - Alkali-activated materials are ideal for the repair of concrete structures in harsh environmental conditions due to their high durability in chemically aggressive environments. However, slag-based mortars, in particular, are prone to shrinkage and associated cracks. In this respect, the application of steel fibres is one solution to reduce the formation of shrinkage induced cracks and to improve post cracking behaviour of these mortars. This study investigated the influence of two different types of steel fibres on the tensile properties of two alkali-activated mortars. Direct tensile tests and single fibre pull-outs were performed to analyse the determining failure modes both on macro and micro scale. Mechanical testing was accompanied by non-destructive testing methods such as digital image correlation and acoustic emission for a detailed analysis of the fracture process. T2 - Local Mechanical Properties - LMP 2019 CY - Prague, Czech Republic DA - 06.11.2019 KW - Alkali-activated materials KW - Fibre pull-out KW - Steel fibres KW - Tensile strength PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509291 UR - https://ojs.cvut.cz/ojs/index.php/APP/article/view/6695 DO - https://doi.org/10.14311/APP.2020.27.0090 VL - 27 SP - 90 EP - 95 CY - Prague, Czech Republic AN - OPUS4-50929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Babski, Veronika A1 - Hüsken, Götz A1 - Pirskawetz, Stephan A1 - Ehlers, Noah A1 - Kühne, Hans-Carsten A1 - Brouwers, H.J.H. ED - Fehling, E. ED - Middendorf, B. ED - Thiemicke, J. T1 - Characterisation of Ultra-High Performance Fibre Reinforced Concrete (UHPFC) under tensile loading by acoustic emission and optical deformation analysis N2 - During the past 20 years, innovative developments in concrete technology have enabled the production of ultra-high performance fibre reinforced concretes (UHPFC) for the protection and preservation of concrete structures. The main characteristics of UHPFC comprise high compressive and flexural strength as well as high ductility compared to normal strength, normal weight concrete (NSC). This paper focuses on the analysis of crack formation and crack propagation in UHPFC under tensile loading under quasistatic conditions by using acoustic emission (AE) and optical deformation analysis (ODA). AE is a non-destructive technique to monitor the development of micro structural damage processes caused by external forces. In this context, AE allows for a continuous monitoring of changes in the microstructure (cracks) over time and the corresponding localisation by appropriate algorithms. The AE measurements were performed along with ODA at the surface of the samples in order to analyse the deformation behaviour of the samples and the crack propagation. For the tests, a UHPFC reference mixture was developed and tested with three different volume percentages of steel fibres (1.0 V.-%, 2.0 V.-%, and 3.0 V.-%). This paper shows that the application of AE is a suitable method to analyse the crack propagation in UHPFC specimens under tensile loading and to localise the crack initiation. Furthermore, insights into the failure mechanism of the fibres are offered by the analysis of the signals of the AE measurements, which allows for a better understanding of UHPFC and its general performance. T2 - 4th International Symposium on Ultra-High Performance Concrete and High Performance Materials (HiPerMat) CY - Kassel, Germany DA - 09.03.2016 KW - UHPFC KW - Tensile loading KW - Acoustic emission KW - Crack formation KW - Optical deformation analysis KW - Crack propagation PY - 2016 SN - 978-3-7376-0094-1 SP - 1 EP - 9 PB - Kassel University Press CY - Kassel AN - OPUS4-36893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pirskawetz, Stephan A1 - Hüsken, Götz A1 - Curosu, I. A1 - Mechtcherine, V. ED - Mechtcherine, V. ED - Slowik, V. ED - Kabele, P. T1 - Combination of Digital Image Correlation and Acoustic Emission for Characterizing Failure Modes in Strain-Hardening Cement-Based Composites (SHCC) N2 - The tensile behavior of strain-hardening cement-based composites (SHCC) is usually investigated on macroscopic scale by means of direct tension tests or bending tests. Additionally, the micromechanical properties of the composites are often described based on single fiber tension and pull-out tests. Such investigations, performed both on macroscopic and microscopic scales, are based on ‘classical’ force and displacement measuring techniques. Advanced test methods such as digital image correlation (DIC) and acoustic emission analysis (AE) may facilitate the identification and the analysis of the failure mechanisms in SHCC, which is important for both monitoring loaded SHCC elements and further material development and optimization. In this study, these two techniques are combined to characterize the failure mechanisms of three different types of SHCC in direct tension tests. The results are related to data of stress and strain measurements. It is shown that DIC provides detailed spatially resolved and stress related strain measurements. Furthermore, it is demonstrated that AE allows for the localization of active cracks, quantification of the damage accumulation under increasing stresses, and characterization of the dominant crack bridging mechanisms and failure modes observed in the different types of SHCC. T2 - 4th International RILEM Conference on Strain-Hardening Cement-Based Composites (SHCC4) CY - Technische Universität Dresden, Germany DA - 18.09.2017 KW - Cementitious composites KW - Strain-hardening KW - Fiber reinforcement KW - Tension KW - Multiple cracking KW - Acoustic emission analysis KW - Digital image correlation PY - 2017 SN - 978-94-024-1194-2 DO - https://doi.org/10.1007/978-94-024-1194-2 VL - 15 SP - 300 EP - 307 PB - Springer Science+Business Media B.V. CY - Dordrecht, The Netherlands AN - OPUS4-42129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pirskawetz, Stephan A1 - Hüsken, Götz A1 - Gründer, Klaus-Peter A1 - Kadoke, Daniel ED - Caspeele, R. ED - Taerwe, L. ED - Frangopol, D. M. T1 - Damage mechanisms analysis of reinforced concrete beams in bending using non-destructive testing N2 - Beams that are loaded in transverse direction are one of the main structural elements used in reinforced concrete structures. Bending beams are used, for example, in bridge girders or joists. The strength related failure modes at maximum loading can be divided into bending and shear failure that could occur with or without indication. Conventional design concepts used in practice for designing structural elements subjected to bending aim at failure modes with sufficient indication (e.g. large deflections or cracks), as it occurs in the case of secondary flexure-compression-failure. These indicators can also be used to identify structural changes of civil infrastructure systems (e.g. bridges) using non-destructive testing methods for Structural Health Monitoring (SHM). However, profound knowledge on the determining failure modes of bending beams is required for the reliable application of structural health monitoring. Therefore, resulting effects of different thermal and mechanical loads on the response of a structure are investigated by means of a bridge demonstrator. The results of this investigation are used for developing a monitoring system. Different non-destructive testing (NDT) methods have been used for analyzing the deformation behavior of a reinforced concrete beam in bending. The suitability of the different measuring techniques will be discussed by means of the obtained experimental results. For this purpose, the deformation behavior of a reinforced concrete beam having a span of 2.75 m was investigated in a four-point bending flexural test at laboratory scale. The focus is on the characterization of determining failure modes by the NDT methods and the comparison with classical measuring techniques (e.g. deformation measurements by displacement transducers). The bending tests have been accompanied by Acoustic Emission analysis (AE), optical deformation measurements using Stereophotogrammetry (SP) and Digital Image Correlation (DIC). The conducted tests have shown that the three-dimensional detection of deformations and resulting strains with optical techniques is beneficial for analyzing the damage mechanism of loaded structures and related crack formation and propagation. Optical techniques can be supplemented by acoustic emission testing which gives detailed information on crack formation and progressing damage. The combination of both techniques offers the application as efficient monitoring system for larger structures. T2 - Sixth International Symposium on Life-Cycle Civil Engineering (IALCCE 2018) CY - Ghent, Belgium DA - 28.10.2018 KW - Concrete Beam KW - Bending KW - Digital Image Correlation KW - Stereophotogrammetry KW - Acoustic Emission Analysis KW - Non-Destructive Testing PY - 2019 SN - 978-1-138-62633-1 SN - 978-1-315-22891-4 SP - 2411 EP - 2417 PB - CRC Press AN - OPUS4-46439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüsken, Götz A1 - Pirskawetz, Stephan A1 - Meinel, Dietmar ED - Banjad Pecur, Ivana ED - Baricevic, Ana ED - Stirmer, Nina ED - Bjegovic, Dubravka T1 - Experimental characterization of the fracture behavior of UHPFRC N2 - Ultra-high performance fiber-reinforced concretes (UHPFRCs) are most suitable for applications with extreme mechanical loads. These extreme conditions require ductile behavior under tensile loading, which is obtained solely by the working mechanism of steel fibers. Profound knowledge on the working mechanism of the steel fibers is necessary to optimize this material. Usually, this knowledge is obtained by means of classical destructive measuring techniques. Adopting measuring techniques from non-destructive material testing helps to analyze and to identify the different stages of the fracture mechanism of UHPFRC in detail. The application of different non-destructive measuring techniques is shown exemplary on tensile tests conducted on an UHPFRC mix and its applicability for analyzing the fracture behavior of such concretes is discussed. The main focus is on the characterization of the relevant failure modes under tensile loading by the different measuring techniques and the comparison with classical measuring techniques (e.g. extensometer). The tensile tests have been analyzed by optical deformation measurements using digital image correlation (DIC), acoustic emission analysis (AE), and 3D computed tomography (CT). T2 - 1st International Conference on Construction Materials for Sustainable Future (CoMS_2017) CY - Zadar, Croatia DA - 19.04.2017 KW - UHPFRC KW - Tensile strength KW - Acoustic emission analysis KW - Optical deformation measurement KW - 3D computed tomography PY - 2017 SN - 978-953-8168-04-8 SP - 293 EP - 299 AN - OPUS4-39910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shamsuddoha, Md A1 - Baeßler, Matthias A1 - Hüsken, Götz A1 - Pirskawetz, Stephan A1 - Kühne, Hans-Carsten A1 - Thiele, Marc ED - Banjad Pecur, Ivana ED - Baricevic, Ana ED - Stirmer, Nina ED - Bjegovic, Dubravka T1 - Identification of failure pattern in cylindrical grouted connection for wind structures - a pilot study N2 - At present, Wind Turbine Generators (WTGs) operating in onshore and offshore wind farms are primary sources of renewable energy around the world. Cylindrical grouted sleeve connections are usually adopted in these WTG structures to connect the upper structure and foundation for ease of installation. These structures including grouted connections experience considerable adverse loading during their lifetimes. Settlements were reported inside similar connections used in energy structures especially oil and gas platforms, which were installed in last three decades. Thus, repair and rehabilitation of such connections in existing wind structures should also be planned ahead to keep them operating in the future. The nature of failure and crack generation in grouted connections are crucial prior to adopt a strengthening strategy. This pilot study is carried out to actualize the failure mechanism in the grouted connection, when subjected to axial loading. A novel reusable scaled cylindrical grouted connection with shear keys was designed and tested for its load bearing behaviour. The mechanical test was accompanied by classical measuring techniques (e.g. displacement transducer) as well as non-destructive measuring techniques (e.g. digital image correlation (DIC), acoustic emission analysis (AE)). The failure mechanism incorporating slippage of the shear keys and cracking of the grout was investigated. The capacity and applicability of such test mould were also discussed. The knowledge is expected to pave way towards repair of deteriorated grouted connections with similar geometry and failure pattern. T2 - 1st International Conference on Construction Materials for Sustainable Future (CoMS_2017) CY - Zadar, Croatia DA - 19.04.2017 KW - Grouted connections KW - Cracks KW - Failure KW - Strengthening strategy KW - Digital image correlation KW - Acoustic emission analysis PY - 2017 SN - 978-953-8168-04-8 SP - 544 EP - 551 AN - OPUS4-39914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hüsken, Götz A1 - Pirskawetz, Stephan A1 - Meinel, Dietmar A1 - Babski, Veronika A1 - Kühne, Hans-Carsten T1 - Methoden zur Analyse des Bruchverhaltens hochfester Stahlfaserbetone N2 - Hochfeste und ultrahochfeste Stahlfaserbetone eignen sich aufgrund ihrer Eigenschaften für den Einsatz bei extremen mechanischen Beanspruchungen. Das für diesen Einsatz erforderliche duktile Bruchverhalten unter Zugbeanspruchung wird ausschließlich durch die Zugabe von geeigneten Stahlfasern und deren Wirkung in der Zementsteinmatrix erreicht. Für eine gezielte stoffliche Optimierung des Systems sind fundierte Kenntnisse zur Wirkungsweise der Stahlfasern notwendig, die bei bisherigen Untersuchungen lediglich auf Basis von klassischen Messverfahren zerstörender Prüfungen gewonnen wurden. Durch das Einbeziehen von Methoden der zerstörungsfreien Materialcharakterisierung können das Bruchverhalten hochfester und ultrahochfester Stahlfaserbetone orts- und zeitaufgelöst untersucht und die einzelnen Phasen des Schädigungsprozesses identifiziert werden. Anhand der vorliegenden Ergebnisse von Zugversuchen eines ultrahochfesten Stahlfaserbetons wird der kombinierte Einsatz von Methoden der zerstörungsfreien Materialprüfung gezeigt und deren Anwendbarkeit in der Analyse des Bruchverhaltens diskutiert. Das Hauptaugenmerk liegt dabei auf der Charakterisierung der ausschlaggebenden Versagensmodi unter Zugbelastung durch die einzelnen Verfahren und dem Vergleich zu klassischen Messmethoden (z. B. Extensometer). Die Zugversuche wurden dazu parallel durch optische Verformungsanalyse mittels Bildkorrelation (DIC), Schallemissionsanalyse (SEA) und 3-D-Computertomografie (CT) begleitet. KW - Stahlfaserbeton KW - Zugbeanspruchung KW - Optische Verformungsanalyse KW - Schallemission KW - Computertomografie PY - 2016 DO - https://doi.org/10.1002/bate.201600056 SN - 1437-0999 VL - 93 IS - 10 SP - 711 EP - 716 PB - Ernst & Sohn CY - Berlin AN - OPUS4-37767 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hüsken, Götz A1 - Shamsuddoha, Md A1 - Pirskawetz, Stephan A1 - Hofmann, Detlef A1 - Baeßler, Matthias A1 - Kühne, Hans-Carsten T1 - Potential of a Repair System for Grouted Connections in Offshore Structures: Development and Experimental Verification N2 - Grouted connections are intensively used in offshore rigs, platforms as well as jacket and monopile offshore wind turbine structures. Being located in remote offshore conditions, these connections can experience considerable adverse loading during their lifetimes. Degradation was reported inside similar connections, which were installed in the last three decades. Grouting in the offshore sites may often be proven difficult, which eventually leads to reduced load-bearing capacity of connections in the long run. Thus, repair and rehabilitation of such connections should be planned ahead to minimize operational delays and costs. In this study, scaled grouted connections were manufactured using a novel mould, whose integrity were monitored using digital image correlation (DIC). The connections were loaded under static load to visualize the main failure pattern using distributed fibre optic sensors and acoustic emission (AE) analysis. Grouted connections were then repaired using a cementitious injectable grout. The effectiveness of the grout injection was monitored using dye penetration technique. Finally, specimens are reloaded to identify the potential of such repair for grouted connections. KW - Offshore KW - Grouted connection KW - Fibre optic sensors KW - Acoustic emission analysis KW - Cracks KW - Repair KW - Rehabilitation KW - Static loading PY - 2021 DO - https://doi.org/10.1016/j.marstruc.2021.102934 VL - 77 SP - 102934 PB - Elsevier Ltd. AN - OPUS4-52059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sigrüner, M. A1 - Hüsken, Götz A1 - Pirskawetz, Stephan A1 - Herz, J. A1 - Muscat, D. A1 - Strübbe, N. T1 - Pull-out behavior of polymer fibers in concrete N2 - The bond between polymer fibers and the surrounding cementitious matrix is essential for the development of concrete reinforcement. The single fiber pull-out test (SFPT) is the standard characterization technique for testing the bond strength. However, the different phases of debonding cannot be distinguished by the SFPT. This study investigates the debonding of different polymer fibers from the surrounding cementitious matrix with a modified SFPT and proposes methods to change the SFPT setup to generate more valuable information on the debonding mechanism. The SFPT was equipped with linear variable differential transformers (LVDT), digital image correlation (DIC) and acoustic emission (AE) analysis. The results demonstrate that the modified SFPT allows a better understanding of the different phases of debonding during fiber pull-out. Furthermore, bond strength values calculated by different methods reveal that the chemical bond of the investigated polymers is not different as reported by previous studies. Deformation measurements performed using LVDTs and DIC are suitable measuring techniques to characterize the debonding mechanism in SFPT. A correlation between recorded AE and debonding phases was not found. KW - Polymer Fibres KW - Concrete KW - Pull-Out Behaviour KW - Debonding Mechanism PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582918 DO - https://doi.org/10.1002/pol.20230264 SN - 2642-4169 SP - 1 EP - 13 PB - Wiley Periodicals, LLC. AN - OPUS4-58291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -