TY - JOUR A1 - Quercia, G. A1 - Van der Putten, J.J.G. A1 - Hüsken, Götz A1 - Brouwers, H.J.H. T1 - Photovoltaic's silica-rich waste sludge as supplementary cementitious material (SCM) JF - Cement and concrete research N2 - Waste sludge, a solid recovered from wastewater of photovoltaic-industries, composes of agglomerates of nano-particles like SiO2 and CaCO3. This sludge deflocculates in aqueous solutions into nano-particles smaller than 1 µm. Thus, this sludge constitutes a potentially hazardous waste when it is improperly disposed. Due to its high content of amorphous SiO2, this sludge has a potential use as supplementary cementitious material (SCM) in concrete. In this study the main properties of three different samples of photovoltaic's silica-rich waste sludge (nSS) were physically and chemically characterized. The characterization techniques included: scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), nitrogen physical adsorption isotherm (BET method), density by Helium pycnometry, particle size distribution determined by laser light scattering (LLS) and zeta-potential measurements by dynamic light scattering (DLS). In addition, a dispersability study was performed to design stable slurries to be used as liquid additives for the concrete production on site. The effects on the hydration kinetics of cement pastes by the incorporation of nSS in the designed slurries were determined using an isothermal calorimeter. A compressive strength test of standard mortars with 7% of cement replacement was performed to determine the pozzolanic activity of the waste nano-silica sludge. Finally, the hardened system was fully characterized to determine the phase composition. The results demonstrate that the nSS can be utilized as SCM to replace portion of cement in mortars, thereby decreasing the CO2 footprint and the environmental impact of concrete. KW - Nano-silica sludge (D) KW - Supplementary cementitious materials (D) KW - Pozzolanic index (C) KW - Mortar (E) PY - 2013 DO - https://doi.org/10.1016/j.cemconres.2013.08.010 SN - 0008-8846 SN - 1873-3948 VL - 54 SP - 161 EP - 179 PB - Pergamon Press CY - New York, NY AN - OPUS4-30384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quercia, G. A1 - Spiesz, P. A1 - Hüsken, Götz A1 - Brouwers, H.J.H. T1 - SCC modification by use of amorphous nano-silica JF - Cement & concrete composites N2 - In this study two different types of nano-silica (nS) were applied in self-compacting concrete (SCC), both having similar particle size distributions (PSD), but produced through two different processes: fumed powder silica and precipitated silica in colloidal suspension. The influence of nano-silica on SCC was investigated with respect to the properties of concrete in fresh (workability) and hardened state (mechanical properties and durability). Additionally, the densification of the microstructure of the hardened concrete was verified by SEM and EDS analyses. The obtained results demonstrate that nano-silica efficiently used in SCC can improve its mechanical properties and durability. Considering the reactivity of the two applied nano-silicas, the colloidal type showed a higher reactivity at early age, which influenced the final SCC properties. KW - Nano-silica KW - Self compacting concrete KW - Durability KW - Chloride KW - Freeze-thaw PY - 2014 DO - https://doi.org/10.1016/j.cemconcomp.2013.09.001 SN - 0958-9465 SN - 1873-393X VL - 45 SP - 69 EP - 81 PB - Elsevier CY - Barking, Essex AN - OPUS4-30385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quercia, G. A1 - Hüsken, Götz A1 - Brouwers, H.J.H. T1 - Water demand of amorphous nano silica and its impact on the workability of cement paste JF - Cement and concrete research N2 - This paper addresses the characterization of six different amorphous silica samples with respect to their application in cement paste. Different mixes are compared and analyzed using the mini spread-flow test. Also the granular properties, different void fraction states of packing and distribution moduli q are analyzed and compared using a mix design tool. A deformation coefficient is derived from the spread-flow test, which correlates with the value of specific surface area computed from the particle size distribution, and intrinsic density of the samples. Finally, the thickness of a constant water layer of 25 nm around the particles is computed at the onset of flowing. The granular analysis demonstrated that it is possible to decrease the water demand of the cement paste when nanoparticles are added and the resulting grading follows the modified Andreasen and Andersen curve (q = 0.5), and the concentration of nano silica is less than 5% bwoc. KW - Nano silica (D) KW - Particle size distribution (B) KW - Surface area (B) KW - Water demand (A) KW - Workability (A) PY - 2012 DO - https://doi.org/10.1016/j.cemconres.2011.10.008 SN - 0008-8846 SN - 1873-3948 VL - 42 IS - 2 SP - 344 EP - 357 PB - Pergamon Press CY - New York, NY AN - OPUS4-26079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hüsken, Götz A1 - Brouwers, H.J.H. T1 - On the early-age behavior of zero-slump concrete JF - Cement and concrete research N2 - This paper presents experimental investigations and analyses on the early-age-behavior of zero-slump concrete, such as compaction behavior and green-strength. First, the influence of the granulometric properties of the fines is discussed in detail. For this purpose, the early-age behavior of two different fines (quartz flour and fly ash) is investigated by means of the intensive compaction test (IC-test). The tests on the influence of the fines focus on effects caused by differences in the particle shape and the use of a plasticizing admixture. The conducted tests on the compaction behavior of the fines and their corresponding green-strength are extended to continuously graded granular mixes. Here, the influence of optimized particle packing on the early-age behavior is presented and a comparison on the basis of the aforementioned quartz flour and fly ash is made. In this consideration, experimental investigations on the early-age behavior of a zero-slump concrete mix and possible effects on the hardened concrete properties are included. KW - Zero-slump concrete (A) KW - Green-strength (C) KW - Compaction behavior (A) KW - Intensive compaction test (C) PY - 2012 DO - https://doi.org/10.1016/j.cemconres.2011.11.007 SN - 0008-8846 SN - 1873-3948 VL - 42 IS - 3 SP - 501 EP - 510 PB - Pergamon Press CY - New York, NY AN - OPUS4-26078 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -