TY - CONF A1 - Hüsken, Götz A1 - Pirskawetz, Stephan A1 - Meinel, Dietmar ED - Banjad Pecur, Ivana ED - Baricevic, Ana ED - Stirmer, Nina ED - Bjegovic, Dubravka T1 - Experimental characterization of the fracture behavior of UHPFRC T2 - Proceedings of the 1st International Conference on Construction Materials for Sustainable Future N2 - Ultra-high performance fiber-reinforced concretes (UHPFRCs) are most suitable for applications with extreme mechanical loads. These extreme conditions require ductile behavior under tensile loading, which is obtained solely by the working mechanism of steel fibers. Profound knowledge on the working mechanism of the steel fibers is necessary to optimize this material. Usually, this knowledge is obtained by means of classical destructive measuring techniques. Adopting measuring techniques from non-destructive material testing helps to analyze and to identify the different stages of the fracture mechanism of UHPFRC in detail. The application of different non-destructive measuring techniques is shown exemplary on tensile tests conducted on an UHPFRC mix and its applicability for analyzing the fracture behavior of such concretes is discussed. The main focus is on the characterization of the relevant failure modes under tensile loading by the different measuring techniques and the comparison with classical measuring techniques (e.g. extensometer). The tensile tests have been analyzed by optical deformation measurements using digital image correlation (DIC), acoustic emission analysis (AE), and 3D computed tomography (CT). T2 - 1st International Conference on Construction Materials for Sustainable Future (CoMS_2017) CY - Zadar, Croatia DA - 19.04.2017 KW - UHPFRC KW - Tensile strength KW - Acoustic emission analysis KW - Optical deformation measurement KW - 3D computed tomography PY - 2017 SN - 978-953-8168-04-8 SP - 293 EP - 299 AN - OPUS4-39910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüsken, Götz A1 - Pirskawetz, Stephan A1 - Meinel, Dietmar T1 - Experimental characterization of the fracture behavior of UHPFRC N2 - Ultra-high performance fiber-reinforced concretes (UHPFRCs) are most suitable for applications with extreme mechanical loads. These extreme conditions require ductile behavior under tensile loading, which is obtained solely by the working mechanism of steel fibers. Profound knowledge on the working mechanism of the steel fibers is necessary to optimize this material. Usually, this knowledge is obtained by means of classical destructive measuring techniques. Adopting measuring techniques from non-destructive material testing helps to analyze and to identify the different stages of the fracture mechanism of UHPFRC in detail. The application of different non-destructive measuring techniques is shown exemplary on tensile tests conducted on an UHPFRC mix and its applicability for analyzing the fracture behavior of such concretes is discussed. The main focus is on the characterization of the relevant failure modes under tensile loading by the different measuring techniques and the comparison with classical measuring techniques (e.g. extensometer). The tensile tests have been analyzed by optical deformation measurements using digital image correlation (DIC), acoustic emission analysis (AE), and 3D computed tomography (CT). T2 - 1st International Conference on Construction Materials for Sustainable Future (CoMS_2017) CY - Zadar, Croatia DA - 19.04.2017 KW - UHPFRC KW - Tensile strength KW - Acoustic emission analysis KW - Optical deformation measurement KW - 3D computed tomography PY - 2017 AN - OPUS4-39913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -