TY - JOUR A1 - Larcher, M. A1 - Arrigoni, M. A1 - Bedon, C. A1 - van Doormaal, A. A1 - Haberacker, C. A1 - Hüsken, Götz A1 - Millon, O. A1 - Saarenheimo, A. A1 - Solomos, G. A1 - Thamie, L. A1 - Valsamos, G. A1 - Williams, A. A1 - Stolz, A. T1 - Design of blast-loaded glazing windows and facades: a review of essential requirements towards standardization JF - Advances in Civil Engineering N2 - The determination of the blast protection level of laminated glass windows and facades is of crucial importance, and it is normally done by using experimental investigations. In recent years numericalmethods have becomemuch more powerful also with respect to this kind of application. This paper attempts to give a first idea of a possible standardization concerning such numerical simulations. Attention is drawn to the representation of the blast loading and to the proper description of the behaviour of the material of the mentioned products, to the geometrical meshing, and to the modelling of the connections of the glass components to the main structure.The need to validate the numerical models against reliable experimental data, some of which are indicated, is underlined. KW - Standardization KW - Facades KW - Glazing windows KW - Blast-load KW - Design PY - 2016 DO - https://doi.org/10.1155/2016/2604232 SN - 1687-8094 VL - 2016 SP - Article 2604232, 1 EP - 14 PB - Hindawi Publishing Corporation AN - OPUS4-37124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Budnik, J. A1 - Betz, T. A1 - Fromm, A. A1 - Gerdes, A. A1 - Gerlach, J. A1 - Götz, M. A1 - Hintzen, W. A1 - Hüttl, R. A1 - Kämpfer, W. A1 - König, A. A1 - Kühner, S. A1 - Lohaus, L. A1 - Meng, Birgit A1 - Neumann, T. A1 - Patzer, M. A1 - Schaab, A. A1 - Schauerte, J. A1 - Siebert, B. A1 - Stephan, D. A1 - Tebbe, H. A1 - Wagner, J.-P. ED - Siebert, B. T1 - Chemischer Angriff auf Betonbauwerke - Bewertung des Angriffsgrads und geeignete Schutzprinzipien T2 - Merkblätter Deutscher Beton- und Bautechnik-Verein e. V. - Betontechnik N2 - In verschiedenen Bereichen des Betonbaus ist Beton einem chemischen Angriff von außen ausgesetzt, der die Dauerhaftigkeit des betreffenden Bauteils bzw. des gesamten Bauwerks beeinträchtigen kann. Für einen chemischen Angriff in natürlichen Böden und Grundwässern bestehen normative Vorgaben in DIN 4030-1 [R10] bzw. DIN 1045-2 [R19], um den Angriffsgrad anhand der Art und Konzentration der angreifenden Stoffe in Expositionsklassen XA1 (schwach angreifend) bis XA3 (stark angreifend) einzustufen. Hinsichtlich weiterer maßgeblicher Einflussfaktoren wird an dieser Stelle nicht näher differenziert, ob und inwieweit die Regelungen für Böden und Grundwässer auch auf andere Bereiche mit chemischem Angriff auf Beton zu übertragen sind, ist stets im Einzelfall zu überprüfen. Ebenfalls sind die zu treffenden Maßnahmen über die Vorgaben der DIN EN 206-1/DIN 1045-2 [R19] hinaus anwendungsspezifisch festzulegen. Der Hauptausschuss Baustofftechnik (HABT) des DBV hat daher den Arbeitskreis "Chemischer Angriff auf Beton" beauftragt, dieses Merkblatt zu erarbeiten, das Hilfestellung bei der Bewertung einer projektspezifischen chemischen Angriffssituation auf Beton sowie bei der Planung und Ausführung von Schutzprinzipien leisten soll. KW - Beton KW - Betonangriff KW - Dauerhaftigkeit KW - Säureangriff KW - Sulfatangriff PY - 2014 SP - 1 EP - 101 PB - Eigenverlag Deutscher Beton- und Bautechnik-Verein e. V. CY - Berlin AN - OPUS4-44662 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bresch, Harald A1 - Meyer-Plath, Asmus A1 - Burgdorf, T. A1 - Packroff, R. A1 - Apel, P. A1 - Adolf, P. A1 - Jesse, A. A1 - Leuschner, C. A1 - Bosse, H. A1 - Dubbert, W. A1 - Epp, A. A1 - Gebel, T. A1 - Götz, M. A1 - Herzberg, F. A1 - Hornbogen, T. A1 - Kersten, N. A1 - Kneuer, C. A1 - Kujath, P. A1 - Pipke, R. A1 - Plitzko, s. A1 - Schlesier, K. A1 - Schröder, F. A1 - Schwirn, K. A1 - Sommer, Y. A1 - Tentschert, J. A1 - Völker, D. A1 - Wolf, T. T1 - 1. Bilanz zur gemeinsamen Forschungsstrategie der Ressortforschungseinrichtungen des Bundes 'Nanotechnologie - Gesundheits- und Umweltrisiken von Nanomaterialien' (2007 - 2011) T2 - 1. Bilanzierung der Forschungsstrategie der Bundesoberbehörden KW - Nanotechnologie KW - Nanopartikel KW - Nanomaterial KW - Bundesoberbehörden KW - Forschungsstrategie PY - 2013 SP - 1 EP - 124 CY - Berlin AN - OPUS4-28538 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klewe, Tim A1 - Völker, Tobias A1 - Götz, J. A1 - Landmann, M. A1 - Wilsch, Gerd A1 - Kruschwitz, Sabine T1 - Sorting of construction and demolition waste by combining LIBS with NIR spectroscopy T2 - International Symposium Non-Destructive Testing in Civil Engineering (NDTCE 2022) N2 - In a joint project of partners from industry and research, the automated recycling of construction and demolition waste (CDW) is investigated and tested by combing laser-induced breakdown spectroscopy (LIBS) and near-infrared (NIR) spectroscopy. Joint processing of information (data fusion) is expected to significantly improve the sorting quality of various materials like concrete, main masonry building materials, organic components, etc., and may enable the detection and separation of impurities such as SO3-cotaining building materials (gypsum, aerated concrete, etc.). The project focuses primarily on the Berlin site to analyze the entire value chain, minimize economic/technological barriers and obstacles at the cluster level, and sustainably increase recovery and recycling rates. First measurements with LIBS and NIR spectroscopy show promising results in distinguishing various material types and indicate the potential for a successful combination. In addition, X-ray fluorescence (XRF) spectroscopy is being performed to obtain more information about the quantitative elemental composition of the different building materials. Future work will apply the developed sorting methodology in a fully automated measurement setup with CDW on a conveyor belt. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - LIBS KW - NDT KW - Circular economy KW - Recycling KW - Material classification PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555531 UR - http://www.ndt.net/?id=27220 VL - 2022/09 SP - 1 EP - 9 PB - NDT.net CY - Bad Breisig AN - OPUS4-55553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Bedon, C. A1 - C., K. A1 - van Doormaal, A. A1 - Haberacker, C. A1 - Hüsken, Götz A1 - Larcher, M. A1 - Saarenheimo, A. A1 - Solomos, G. A1 - Stolz, A. A1 - Thamie, L. A1 - Valsamos, G. T1 - A comparison of existing standards for testing blast resistant glazing and windows N2 - It is important to protect critical buildings (shopping centres, government buildings and embassies), infrastructure and utilities, train and underground stations against being damaged, destroyed or disrupted by deliberate acts of terrorism, criminal activity and malicious behaviour. Normal regulations and building guidelines do not generally take into account these threats. The introduction of appropriate regulations or guidelines, where deemed necessary, should enhance the resilience of buildings and infrastructure against explosion incidents. In order to protect the built infrastructure, methods are required to quantify the resistance of structural components against explosive loading and to assess the hazards resulting from the failure of an element. The applicable state-of-the-art techniques may include either experimental or numerical methods, or a combination of both. Therefore, the thematic group (TG) on the resistance of structures to explosion effects was formed in order to bring the required expertise together, make it commonly available and to find and define harmonised methods and solutions which can be provided to the decision-makers responsible for critical infrastructure protection. This report discusses the differences between the existing standards for testing blast-resistant glazing and windows and it presents basic recommendations for the future development of the suite of European standards in this area. KW - Building industry KW - Accident prevention KW - Glass industry KW - Explosive KW - Industrial infrastructure KW - Risk prevention KW - Urban infrastructure KW - Terrorism KW - Safety standard KW - Technical standard KW - Research report PY - 2014 SN - 978-92-79-46168-2 DO - https://doi.org/10.2788/361383 SN - 1831-9424 VL - JRC94930 SP - 1 EP - 42 AN - OPUS4-36904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - C., K. A1 - van Doormaal, A. A1 - Haberacker, C. A1 - Hüsken, Götz A1 - Larcher, M. A1 - Saarenheimo, A. A1 - Solomos, G. A1 - Stolz, A. A1 - Thamie, L. A1 - Bedon, C. T1 - Numerical simulations for classification of blast loaded laminated glass: possibilities, limitations and recommendations N2 - It is important to protect critical buildings (shopping centres, government buildings and embassies), infrastructure and utilities, train and underground stations against being damaged, destroyed or disrupted by deliberate acts of terrorism, criminal activity and malicious behaviour. Normal regulations and building guidelines do not generally take into account these threats. The introduction of appropriate regulations or guidelines, where deemed necessary, should, enhance the resilience of buildings and infrastructure against explosion incidents. In order to protect the built infrastructure, methods are required to quantify the resistance of structural components against explosive loading and to assess the hazards resulting from the failure of an element. The applicable state-of-the-art techniques may include either experimental or numerical methods, or a combination of both. Therefore, the thematic group (TG) on the resistance of structures to explosion effects was formed in order to bring the required expertise together, make it commonly available and to find and define harmonised methods and solutions which can be provided to the decision-makers responsible for critical infrastructure protection. The current report summarizes existing best practices for the numerical finite element modelling of blast loading, including the important topics of domain discretisation, implicit/explicit formulation, Lagrangian/Eulerian solvers, the mathematical description of the material behaviour etc. Furthermore recommendations for the modelling of laminated glass elements are formulated and knowledge gaps in this application area are pointed out. Hence the report builds the basis for an actual evaluation of the different numerical methods, their suitability to certain problems, and their capability to support/complement the experimental testing of glass components. It thus provides helpful information to design architects and engineers, and more generally to critical infrastructure stakeholders, responsible for the structural integrity and security of the infrastructure in case of an explosion. KW - building industry KW - explosive KW - accident prevention KW - glass industry KW - industrial infrastructure KW - risk prevention KW - urban infrastructure KW - terrorism KW - technical standard KW - research report PY - 2014 SN - 978-92-79-46172-9 DO - https://doi.org/doi:10.2788/083832 SN - 1831-9424 SP - 1 EP - 39 AN - OPUS4-36908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Bedon, C. A1 - C., K. A1 - van Doormaal, A. A1 - Haberacker, C. A1 - Hüsken, Götz A1 - Larcher, M. A1 - Millon, O. A1 - Saarenheimo, A. A1 - Solomos, G. A1 - Stolz, A. A1 - Thamie, L. A1 - Valsamos, G. A1 - Williams, A. T1 - A set of essential requirements towards standardising the numerical simulation of blast-loaded windows and facades N2 - The determination of the blast protection level of laminated glass windows and facades is of crucial importance, and it is normally done by using experimental investigations. In recent years numerical methods have become much more powerful also with respect to this kind of application. This report attempts to give a first idea of a possible standardisation concerning such numerical simulations. Attention is drawn to the representation of the blast loading and of the behaviour of the material of the mentioned products, to the geometrical meshing, as well as to the modelling of the connections of the glass components to the main structure. The need to validate the numerical models against reliable experimental data, some of which are indicated, is underlined. KW - building industry KW - accident prevention KW - glass industry KW - explosive KW - industrial infrastructure KW - risk prevention KW - urban infrastructure KW - safety standard KW - technical standard KW - simulation KW - research report PY - 2015 SN - 978-92-79-57507-5 DO - https://doi.org/doi:10.2788/684747 SN - 1831-9424 SP - 1 EP - 25 AN - OPUS4-36909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Bedon, C. A1 - C., K. A1 - van Doormaal, A. A1 - Haberacker, C. A1 - Hüsken, Götz A1 - Larcher, M. A1 - Millon, O. A1 - Saarenheimo, A. A1 - Solomos, G. A1 - Stolz, A. A1 - Thamie, L. A1 - Valsamos, G. A1 - Williams, A. T1 - Recommendations for the improvement of existing European norms for testing the resistance of windows and glazed facades to explosive effects N2 - It is important to protect critical buildings (shopping centres, government buildings and embassies), infrastructure and utilities, train and underground stations from being damaged, destroyed or disrupted by deliberate acts of terrorism, criminal activity and malicious behaviour. Normal regulations and building guidelines do not generally take into account these threats. The introduction of appropriate regulations or guidelines, where deemed necessary, should enhance the resilience of buildings and infrastructures against explosion incidents. In order to protect the built infrastructure, testing methods are required which can answer the question whether certain building elements can withstand certain loading conditions created by an explosive event. The applicable state-of-the-art techniques may include either experimental or numerical methods, or a combination of both. Therefore, the thematic group (TG) on the resistance of structures to explosion effects was formed in order to bring the required expertise together, to make it commonly available and to find and define harmonised methods and solutions which can be provided to the decision-makers responsible for critical infrastructure protection. The TG described in a fist report JPC87202 the physical phenomena which have to be understood in order to ensure a proper testing of the elements and a correct interpretation of the results. In a second step, the differences between the existing standards for testing blast-resistant glazing and windows have been derived, and a basis for fundamental recommendations for the future development of the suite of European standards has been addressed JRC94930. Based on the prior findings, this report now formulates the proper enhancements of the existing standards in terms of actual recommendations for the improvement of the test standards. KW - building industry KW - accident prevention KW - glass industry KW - explosive KW - industrial infrastructure KW - safety standard KW - technical standard KW - urban infrastructure KW - terrorism KW - research report PY - 2015 SN - 978-92-79-53394-5 DO - https://doi.org/doi:10.2788/319252 SN - 1831-9424 SP - 1 EP - 42 AN - OPUS4-36910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weise, Frank A1 - Hüsken, Götz A1 - Niedack-Nad, Marianne A1 - Wieland, M. T1 - AL Sp-Beton - Präzision des Prüfverfahrens JF - Straße und Autobahn N2 - Für die rechnerische Dimensionierung der Betondecken im Oberbau von Verkehrsflächen für den Neubau sowie die Erneuerung nach RDO-Beton 09 ist die statische Spaltzugfestigkeit an der unteren bzw. unteren und oberen Scheibe des Betonzylinders bzw. Bohrkerns entsprechend der Vorgaben der AL Sp-Beton zu bestimmen. Aufgrund der unzureichenden Kenntnis der Präzision dieses Prüfverfahrens wurden mit einem breit aufgestellten Ringversuch die statistischen Kennwerte an Labor- und Bestandsbetonen unter Vergleich- und Wiederholbedingungen auf der Grundlage des FGSV-Merkblatts über die statistische Auswertung von Prüfergebnissen ermittelt. Für eine möglichst gute statistische Absicherung nahmen an dem Ringversuch dreizehn erfahrene Prüfstellen teil. Zur Abdeckung des vielschichtigen Einsatzes des Prüfverfahrens erfolgte der Ringversuch an acht Prüflosen. Dabei berücksichtigen einerseits die Prüflose 1 und 2 mit den im Transportbetonwerk hergestellten Betonzylindern die Erst-/Eignungsprüfung und das darauf aufbauende Prüflos 3 mit Bohrkernen aus einer im Feldversuch hergestellten Fahrbahnplatte mit gleicher Betonrezeptur die Übereinstimmungskontrolle bei Neubaumaßnahmen. Andererseits findet der Einsatz des Prüfverfahrens bei der Restsubstanzbewertung von Betonfahrbahnplatten bei den Prüflosen 4 bis 7 mit den Bohrkernen aus vier in Waschbetonbauweise ausgeführten Fahrbahnplatten Berücksichtigung. Das zusätzlich aufgenommene Prüflos 8 mit einem Labormörtel dient der Herausarbeitung des Materialeinflusses auf die Präzision der Spaltzugfestigkeitsprüfung. Zusammenfassend kann festgestellt werden, dass die Präzision der in der AL SP-Beton beschriebenen Spaltzugfestigkeitsprüfung mit einem Variationskoeffizienten von weniger als 10 % unter Wiederhol- und Vergleichsbedingungen hinreichend genau ist. Der geringe Unterschied zwischen den Variationskoeffizienten unter Wiederhol- und Vergleichsbedingungen lässt zusätzlich den Schluss zu, dass der Einfluss des unterschiedlichen Personals und der verschiedenartigen Prüftechniken bei den einzelnen Prüfstellen relativ gering ist. Die im Rahmen des Ringversuchs gewonnenen Erkenntnisse haben bereits partiell Eingang in die Normung gefunden. KW - Betonfahrbahndecken KW - Spaltzugfestigkeit KW - Ringversuch KW - Verfahrenspräzision PY - 2014 SN - 0039-2162 VL - 66 IS - 10 SP - 790 EP - 798 PB - Kirschbaum-Verl. CY - Bonn-Bad Godesberg AN - OPUS4-32066 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weise, Frank A1 - Hüsken, Götz A1 - Niedack-Nad, Marianne A1 - Wieland, M. T1 - AL Sp-Beton - Präzision des Prüfverfahrens T2 - Betonstraßentagung 2013 N2 - Für die rechnerische Dimensionierung der Betondecken im Oberbau von Verkehrsflächen für den Neubau sowie die Erneuerung nach RDO Beton 09 ist die statische Spaltzugfestigkeit an der unteren bzw. unteren und oberen Scheibe des Betonzylinders bzw. Bohrkerns entsprechend der Vorgaben der AL Sp-Beton zu bestimmen. Aufgrund der unzureichenden Kenntnis der Präzision dieses Prüfverfahrens wurden mit einem breit aufgestellten Ringversuch die statistischen Kennwerte an Labor- und Bestandsbetonen unter Vergleich- und Wiederholbedingungen auf der Grundlage des „Merkblatts über die statistische Auswertung von Prüfergebnissen" ermittelt. Für eine möglichst gute statistische Absicherung nahmen an dem Ringversuch 13 erfahrene Prüfstellen teil. Zur Abdeckung des vielschichtigen Einsatzes des Prüfverfahrens erfolgte der Ringversuch an acht Prüflosen. Dabei berücksichtigen einerseits die Prüf lose 1 und 2 mit den im Transportbetonwerk hergestellten Betonzylindern die Erst-/Eignungsprüfung und das darauf aufbauende Prüflos 3 mit Bohrkernen aus einer im Feldversuch hergestellten Fahrbahnplatte mit gleicher Betonrezeptur die Übereinstimmungskontrolle bei Neubaumaßnahmen. Andererseits findet der Einsatz des Prüfverfahrens bei der Restsubstanzbewertung von Betonfahrbahnplatten bei den Prüflosen 4 bis 7 mit den Bohrkernen aus vier in Waschbetonbauweise ausgeführten Fahrbahnplatten Berücksichtigung. Das zusätzlich aufgenommene Prüflos 8 mit einem Labormörtel dient der Herausarbeitung des Materialeinflusses auf die Präzision der Spaltzugfestigkeitsprüfung. Zusammenfassend kann festgestellt werden, dass die Präzision der in der AL SP-Beton beschriebenen Spaltzugfestigkeitsprüfung mit einem Variationskoeffizienten von weniger als 10 % unter Wiederhol- und Vergleichbedingungen hinreichend genau ist. Der geringe Unterschied zwischen den Variationskoeffizienten unter Wiederhol- und Vergleichbedingungen lässt zusätzlich den Schluss zu, dass der Einfluss des unterschiedlichen Personals und der verschiedenartigen Prüftechniken bei den einzelnen Prüfstellen relativ gering ist. Die im Rahmen des Ringversuchs gewonnenen Erkenntnisse haben bereits partiell Eingang in die Normung gefunden. T2 - Betonstraßentagung 2013 CY - Karlsruhe, Germany DA - 19.09.2013 KW - Spaltzugfestigkeit KW - Ringversuch KW - Präzision KW - Vergleich- und Wiederholbedingungen PY - 2013 SN - 978-3-86446-076-0 N1 - Serientitel: FGSV-Schriftenreihe der Arbeitsgruppe Betonbauweisen – Series title: FGSV-Schriftenreihe der Arbeitsgruppe Betonbauweisen SP - 106 EP - 122 AN - OPUS4-30622 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Van Doormaal, A. A1 - Haberacker, C. A1 - Hüsken, Götz A1 - Larcher, M. A1 - Saarenheimo, A. A1 - Solomos, G. A1 - Stolz, A. A1 - Thamie, L. A1 - Valsamos, G. T1 - Review report of testing methods - ERNCIP thematic area resistance of structures to explosion effects - Deliverable D1 T2 - Resistance of structures to explosion effects N2 - It is important to protect critical buildings (shopping centres, government buildings and embassies), infrastructure and utilities, train and underground stations against being damaged, destroyed or disrupted by deliberate acts of terrorism, criminal activity and malicious behaviour. Normal regulations and building guidelines do not generally take into account these threats. The introduction of regulations or guidelines should support the resilience of the buildings and infrastructure against explosive incidents. In order to protect the infrastructure, methods are required to quantify the resistance of structural elements against explosive loading and to assess the hazards resulting from failure of an element. The applicable state-of-the-art techniques may be either experimental or numerical methods, or a combination of both. Therefore, the thematic group (TG) on the resistance of structures to explosion effects was formed in order to bring the required expertise together, make it commonly available and to find and define harmonised methods and solutions which can be provided to the decision-makers responsible for critical infrastructure protection. This first report of the TG gives a comprehensive summary of the existing methods which can be used to analyse and test the resistance of glazing and windows under blast-loading conditions. Within this context, the experimental methods of testing using high explosives and testing using blast simulators called shock tubes is presented and explained. In addition, the potential of numerical simulations is highlighted in terms of their applicability to the different glass materials. A short, comprehensive theoretical background is given for each method. Based on this, each method is described with its requirements, realisation and the related measurement techniques. Furthermore, an interpretation of the measurements is highlighted. For the numerical simulations, the basic discretisation and calculations schemes are presented in combination with the available constitutive material descriptions for the different significant materials. Finally the chances for verification and validation of the numerical results are presented. Hence the report builds the basis for an actual evaluation of the different test methods and their applicability to certain problems, and provides helpful information for critical infrastructure stakeholders, owners and operators considering the structural resistance of the infrastructure to the effects of explosion in a comprehensive document. KW - Critical infrastructure KW - Explosion effects KW - Shock tube KW - Arena test KW - Simulation KW - Building industry KW - Accident prevention KW - Explosive KW - Industrial infrastructure KW - Risk prevention KW - Urban infrastructure KW - Terrorism KW - Technical standard KW - Research report PY - 2013 SN - 978-92-79-35104-4 DO - https://doi.org/10.2788/57271 SN - 1831-9424 SP - JRC87202, 1 EP - 74 AN - OPUS4-33038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Budnik, J. A1 - Betz, T. A1 - Brameshuber, W. A1 - Fromm, A. A1 - Gerdes, A. A1 - Gerlach, J. A1 - Götz, M. A1 - Hart, R. A1 - Heese, C. A1 - Hintzen, W. A1 - Hüttl, R. A1 - Kämpfer, W. A1 - König, A. A1 - Kühner, S. A1 - Lohaus, L. A1 - Meng, Birgit A1 - Neumann, T. A1 - Remus, R. A1 - Schaab, A. A1 - Schäffel, P. A1 - Schauerte, J. A1 - Schönborn, A. A1 - Siebert, B. A1 - Stephan, D. A1 - Tebbe, H. A1 - Wagner, J.-P. ED - Siebert, B. T1 - Chemischer Angriff auf Beton - Empfehlungen zur Prüfung und Bewertung T2 - Merkblätter Deutscher Beton- und Bautechnik-Verein e. V. - Betontechnik N2 - ln den letzten Jahren wurden diverse Prüfverfahren und Methoden entwickelt, um die Leistungsfähigkeit von Beton bzw. Bindemittel hinsichtlich des Widerstands gegenüber betonaggressiven Einwirkungen beurteilen zu können. Ein wesentliches Ziel von Prüfverfahren zur Beurteilung der Dauerhaftigkeit von Baustoffen ist, die im Laufe der Nutzungsdauer zu erwartenden Einwirkungen auf den Baustoff realitätsnah abzubilden. Dazu sind die Prüfparameter auf die im jeweiligen Anwendungsbereich vorherrschenden Umgebungs- und Randbedingungen anzupassen. Daneben sind auch die Bewertungskriterien individuell unter Berücksichtigung der im Einzelfall geforderten Nutzungsdauer eines Bauwerks festzulegen. Eine systematische Zuordnung von adäquaten Prüfverfahren bzw. Prüfparametem und Bewertungskriterien für die verschiedenen Anwendungsbereiche im Betonbau, in denen betonaggressive Einwirkungen auftreten, ist mit Ausnahme von Einzelfällen bislang nicht vorhanden. Daneben stellt sich in der Praxis immer wieder das Problem, das Angriffspotenzial der Umgebung eines Bauwerks (prüftechnisch) zu erfassen und zu bewerten. Der Hauptausschuss Baustofftechnik des DBV hat daher den Arbeitskreis „Chemischer Angriff auf Beton“ beauftragt, dieses Merkblatt zu erarbeiten, das auf Basis von einschlägigen Erfahrungen der Baupraxis und wissenschaftlichen Erkenntnissen Grundsätze und bewährte Methoden zur Beurteilung der Einwirkungs- und Widerstandsseite beim chemischen Angriff auf Beton aufzeigt und diesbezüglich Hinweise für verschiedene Anwendungsbereiche im Betonbau liefert. KW - Beton KW - Betonangriff KW - Dauerhaftigkeit KW - Säureangriff PY - 2017 SP - 1 EP - 65 PB - Eigenverlag Deutscher Beton- und Bautechnik-Verein e. V. CY - Berlin AN - OPUS4-44663 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Larcher, M. A1 - Arrigoni, A. A1 - Bedon, C. A1 - van Doormaal, A. A1 - Haberacker, C. A1 - Hüsken, Götz A1 - Millon, O. A1 - Saarenheimo, A. A1 - Solomos, G. A1 - Thamie, L. A1 - Valsamos, G. A1 - Williams, A. A1 - Stolz, A. T1 - Recommendations for a new generation of standards for testing numerical assessment of blast-loaded glass windows T2 - Key Engineering Materials N2 - The determination of the blast protection level of civil engineering buildings components against explosive effects represents a topic of crucial importance, in current practice. However, some key aspects of blast resistant structures design have been only marginally considered in the last decade, and currently still require appropriate regulations. This is especially true in the case of windows and facades, where the intrinsic material brittleness is the major influencing parameter for blast-resistant assemblies. While blast assessment of buildings and systems is usually achieved by means of experimental investigations, as well as numerical simulations, general regulations and guidelines are currently missing. In this regard, the European Reference Network for Critical Infrastructure Protection (ERNCIP) Thematic Group “Resistance of Structures to Explosion Effects” attempts to develop guidelines and recommendations aimed to harmonise test procedures in experimental testing of glass windows under blast, as well as standardized approaches for their vulnerability assessment via numerical modelling. In this paper, major Thematic Group outcomes and next challenges are briefly summarized. T2 - International Conference on Structural and Mechanical Engineering for Security and Prevention - ICSMESP 2017 CY - Prague, Czech Republic DA - 14.06.2017 KW - Blast protection KW - Blast loaded glass windows KW - Experimental testing KW - Finite element numerical modelling KW - Standardisation PY - 2017 DO - https://doi.org/10.4028/www.scientific.net/KEM.755.121 SN - 1662-9795 VL - 755 SP - 121 EP - 130 PB - Trans Tech Publications Inc. CY - Zurich, Switzerland AN - OPUS4-41927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sigrüner, M. A1 - Hüsken, Götz A1 - Pirskawetz, Stephan A1 - Herz, J. A1 - Muscat, D. A1 - Strübbe, N. T1 - Pull-out behavior of polymer fibers in concrete JF - Journal of Polymer Science N2 - The bond between polymer fibers and the surrounding cementitious matrix is essential for the development of concrete reinforcement. The single fiber pull-out test (SFPT) is the standard characterization technique for testing the bond strength. However, the different phases of debonding cannot be distinguished by the SFPT. This study investigates the debonding of different polymer fibers from the surrounding cementitious matrix with a modified SFPT and proposes methods to change the SFPT setup to generate more valuable information on the debonding mechanism. The SFPT was equipped with linear variable differential transformers (LVDT), digital image correlation (DIC) and acoustic emission (AE) analysis. The results demonstrate that the modified SFPT allows a better understanding of the different phases of debonding during fiber pull-out. Furthermore, bond strength values calculated by different methods reveal that the chemical bond of the investigated polymers is not different as reported by previous studies. Deformation measurements performed using LVDTs and DIC are suitable measuring techniques to characterize the debonding mechanism in SFPT. A correlation between recorded AE and debonding phases was not found. KW - Polymer Fibres KW - Concrete KW - Pull-Out Behaviour KW - Debonding Mechanism PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-582918 DO - https://doi.org/10.1002/pol.20230264 SN - 2642-4169 SP - 1 EP - 13 PB - Wiley Periodicals, LLC. AN - OPUS4-58291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -