TY - JOUR A1 - Fink, Friedrich A1 - Emmerling, Franziska A1 - Falkenhagen, Jana T1 - Identification and Classification of Technical Lignins by means of Principle Component Analysis and k-Nearest Neighbor Algorithm N2 - The characterization of technical lignins is a key step for the efficient use and processing of this material into valuable chemicals and for quality control. In this study 31 lignin samples were prepared from different biomass sources (hardwood, softwood, straw, grass) and different pulping processes (sulfite, Kraft, organosolv). Each lignin was analysed by attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy. Statistical analysis of the ATR-FT-IR spectra by means of principal component analysis (PCA) showed significant differences between the lignins. Hence, the samples can be separated by PCA according to the original biomass. The differences observed in the ATR-FT-IR spectra result primarily from the relative ratios of the p-hydroxyphenyl, guaiacyl and syringyl units. Only limited influence of the pulping process is reflected by the spectral data. The spectra do not differ between samples processed by Kraft or organosolv processes. Lignosulfonates are clearly distinguishable by ATR-FT-IR from the other samples. For the classification a model was created using the k-nearest neighbor (k NN) algorithm. Different data pretreatment steps were compared for k=1…20. For validation purposes, a 5-fold cross-validation was chosen and the different quality criteria Accuracy (Acc), Error Rate (Err), Sensitivity (TPR) and specificity (TNR) were introduced. The optimized model for k=4 gives values for Acc = 98.9 %, Err = 1.1 %, TPR = 99.2 % and TNR = 99.6 %. KW - Classification KW - PCA KW - K-nearest neighbor KW - FT-IR KW - Technical lignin PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533855 DO - https://doi.org/10.1002/cmtd.202100028 VL - 1 IS - 8 SP - 350 EP - 396 PB - Wiley-VCH GmbH AN - OPUS4-53385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fink, Friedrich A1 - Stawski, Tomasz M. A1 - Stockmann, Jörg Manfred A1 - Emmerling, Franziska A1 - Falkenhagen, Jana T1 - Surface Modification of Kraft Lignin by Mechanochemical Processing with Sodium Percarbonate N2 - In this article, we present a novel one-pot mechanochemical reaction for the surface activation of lignin. The process involves environmentally friendly oxidation with hydrogen peroxide, depolymerization of fractions with high molecular mass, and introduction of new carbonyl functions into the lignin backbone. Kraft lignin was ground with sodium percarbonate and sodium hydroxide in a ball mill at different time intervals. Analyses by infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR), size exclusion chromatography (SEC), dynamic vapor sorption (DVS), and small-angle X-ray scattering (SAXS) showed significant improvements. After only 5 min of reaction, there was a 47% reduction in mass-average molecular weight and an increase in carboxyl functionalities. Chemical activation resulted in an approximately 2.8-fold increase in water adsorption. Principal component analysis (PCA) provided further insight into the correlations between IR spectra and SAXS parameters KW - Kraft Lignin KW - Mechanochemical oxidation KW - SEC KW - FTIR KW - SAXS KW - PCA PY - 2023 DO - https://doi.org/10.1021/acs.biomac.3c00584 SN - 1525-7797 SP - 1 EP - 11 PB - American Chemical Society AN - OPUS4-58074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fink, Friedrich T1 - Mechanochemical valorisation of kraft-lignin N2 - As one of nature's largest carbon sources with an annual production of around 20 billion tonnes, lignin is the third most abundant biopolymer on the planet. It becomes available as technical lignin, which is produced as a by-product in the pulp and paper industry and in smaller quantities in second generation biofuel refineries. Current estimates suggest that less than 10% of all technical lignin is reused. The high polydispersity, complex heterogeneous structure and uncertain reactivity are the major limiting factors for further processing. The most common applications for various technical lignins without extensive modifications are for example: Surface active substances, additives in bitumen, cement and animal feed. One way to make lignin usable is to break the structure into oligomer units and thus reduce the polydispersity and average molar mass. In addition, it is advantageous to introduce new functionalities such as hydroxyl or carbonyl groups when splitting the high-molecular-weight (HMW) fractions, or to convert existing functionalities. In this study, a mechanochemical method is presented that can degrade and modify technical kraft lignin by means of sodium percarbonate (SPC). T2 - 10th Intern. Symp. on the Separation and Characterisation of Natural and Synthetic Macromolecules (SCM-10) CY - Amsterdam, Netherlands DA - 01.02.2023 KW - Technical Lignin KW - Mechanochemical oxidation PY - 2023 AN - OPUS4-57001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fink, Friedrich T1 - From Bench to Mini – Identification of technical Lignins with NIR N2 - One of the most underutilized biological materials on our planet is lignin. It is the second most abundant biopolymer after cellulose. On an industrial scale, it mainly accumulates as a by-product in the pulp and paper industry. However, the utilization of technical lignins faces several challenges, including their complex and heterogeneous structure, which makes them difficult to process and limits their application. Additionally, the feedstock origin is a limiting factor. Classification according to the biomass origin is important for quality assurance and predictability of potential applications. In this study, technical lignins were analyzed using a near-infrared (NIR) spectrometer. Different models were developed to classify these lignins, enabling rapid and reliable identification of their biomass sources, including softwoods, hardwoods, straw, and grasses. Various machine learning algorithms such as Support Vector Machines (SVM), Gaussian Process Classification (GPC), Gaussian Naive Bayes (GNB), and Decision Tree Classification (DTC) were compared based on different spectral preprocessing techniques and dimensionality reduction tools. The efficacy of the method was further tested using combined spectra from small handheld and compact spectrometers. T2 - ESOPS 2024 CY - Berlin, Germany DA - 09.09.2024 KW - NIR KW - Lignin PY - 2024 AN - OPUS4-62275 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fink, Friedrich A1 - Falkenhagen, Jana T1 - From bench to mini – Classification of technical lignins with NIR N2 - Lignin, a by-product of the pulp and paper industry, is the second most abundant biopolymer but remains underutilized due to its complex structure and variability in biomass origin. Classification based on biomass source is crucial for quality assurance and application predictability. This study employs near-infrared (NIR) spectroscopy to classify technical lignins from softwoods, hardwoods, straw, and grasses. Machine learning models (ML), including Support Vector Machines (SVM), Gaussian Process Classification (GPC), Gaussian Naive Bayes (GNB), and Decision Tree Classification (DTC), were developed using spectral preprocessing and principle component analysis (PCA). The models were compared with spectra from handheld and compact spectrometers. Results highlight the potential of NIR spectroscopy and machine learning to enable rapid, reliable lignin classification, paving the way for improved industrial utilization of this abundant resource. T2 - 11th International Symposium on the Separation and Characterization of Natural and Synthetic Macromolecules CY - Amsterdam, The Netherlands DA - 21.01.2025 KW - Lignin KW - Classification KW - Near infrared spectroscopy PY - 2025 AN - OPUS4-62531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fink, Friedrich A1 - Stawski, Tomasz M. A1 - Emmerling, Franziska A1 - Falkenhagen, Jana T1 - A novel machine-learning approach to unlock technical lignin classification by NIR spectroscopy - bench to handheld N2 - In this research, the utilization of near-infrared (NIR) spectroscopy in conjunction with advanced machine learning methods is investigated for categorizing technical lignins obtained from different biomass sources and industrial procedures. Technical lignins, such as kraft, organosolv and lignosulfonates, have different chemical compositions, which continue to make uniform characterization and application in sustainable sectors extremely difficult. Fast, universally accessible analytics combined with data analysis is still an open question. For the first time three distinct NIR spectrometers—a high-performance benchtop system, a mid-priced compact device, and an economical handheld unit—were utilized to record NIR spectra of 31 unique lignin samples. The spectra underwent pre-processing through standard normal variate (SNV) transformation and Savitzky-Golay derivatives to amplify spectral features and decrease noise. Principal component analysis (PCA) was employed to reduce data complexity and extract crucial characteristics for classification purposes. Subsequently, four machine learning algorithms—Support Vector Machines (SVM), Gaussian Naive Bayes (GNB), Gaussian Process Classification (GPC), and Decision Tree Classification (DTC)—were implemented for the classification of the lignin samples. The DTC model exhibited the highest accuracy among them across different spectrometers. Although the benchtop spectrometer produced the most precise outcomes, the compact NeoSpectra system also displayed potential as a cost-efficient option. Nonetheless, the restricted spectral coverage of the handheld NIRONE spectrometer resulted in reduced classification accuracy. Our discoveries highlight the capability of NIR spectroscopy, combined with robust data analysis techniques, for the swift and non-destructive classification of technical lignins, facilitating their improved utilization in sustainable fields. KW - Technical lignins KW - NIR spectroscopy KW - Classification KW - Machine-learning KW - PCA PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634518 DO - https://doi.org/10.1016/j.chemolab.2025.105467 SN - 0169-7439 VL - 264 SP - 1 EP - 10 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-63451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhuang, Yiling A1 - Haderlein, Stefan B. A1 - Lutze, Holger V. A1 - Sun, Chen A1 - Fink, Friedrich A1 - Paul, Andrea A1 - Spahr, Stephanie T1 - Persulfate activation by biochar for trace organic contaminant removal from urban stormwater N2 - Persistent and mobile trace organic contaminants (TrOCs) in urban stormwater are difficult to remove through sedimentation- or sorption-based treatment and pose a risk to aquatic ecosystems and drinking water supplies. We demonstrate that the chemical oxidant peroxydisulfate (PDS) can be activated by shrimp shell biochar at pH 7 to form reactive species that selectively react with widespread stormwater contaminants. Of 11 TrOCs tested, oxidative transformation was observed for 1,3-diphenylguanidine, 2-hydroxybenzothiazole, 1H-benzotriazole, 5-methyl-benzotriazole, and diuron during water treatment with biochar and PDS. Laboratory batch experiments conducted with street runoff and a synthetic water showed that the water matrix, containing up to 7.5 mg L-1 dissolved organic carbon and 100 mM chloride, had a minor effect on the formation of reactive species and contaminant transformation. Using a set of scavengers and probe compounds, we provide evidence for singlet oxygen (1O2) as the predominant reactive species in the biochar/PDS system, which is in agreement with the selectivity of the process to oxidize electron-rich organic contaminants. The results of our study inform new strategies for stormwater treatment using heterogeneous oxidation processes for the abatement of persistent and mobile organic contaminants. KW - Stormwater treatment KW - Oxidation processes KW - Pyrogenic carbon PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-637952 DO - https://doi.org/10.1016/j.watres.2025.123921 SN - 0043-1354 VL - 284 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-63795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhuang, Yiling A1 - Haderlein, Stefan B. A1 - Hagemann, Nikolas A1 - Grafmüller, Jannis A1 - Gogler, Karolin A1 - Paul, Andrea A1 - Fink, Friedrich A1 - Spahr, Stephanie T1 - Activation of persulfate by biochar and iron: role of biochar pyrolysis conditions and ash amendments N2 - Redox-active biochars can enhance contaminant transformation in persulfate-based Fenton-like water treatment by facilitating Fe(III) reduction to Fe(II). However, biochar properties vary greatly depending on both feedstock selection and pyrolysis conditions. Best suited biochars for Fe(III) reduction and persulfate activation have yet to be identified. Here, we investigated eight biochars for their ability to activate persulfate with Fe(III) to transform N,N-diethyl-m-toluamide (DEET) in water. Four of the biochars were produced from beech wood under different pyrolysis conditions (450–750 °C, high and low nitrogen flow rate in the reactor) and four biochars were produced from softwood amended with 0 – 43 weight percent (wt%) wood ash prior to pyrolysis at 500 °C. Beech wood biochar produced at 450 °C transformed DEET most efficiently with a half-life time of 39 ± 4 min, likely due to the high concentration of surface oxygen functional groups and persistent free radicals that accelerated Fe(III) reduction and formation of reactive species. Among the ash-amended biochars, biochar with 16 wt% ash amendment showed the most efficient DEET transformation with a half-life time of 27 ± 0.6 min, which is 10-times faster compared to a non-ash-amended biochar produced from the same biomass under similar pyrolysis conditions. Ash amendment led to the formation of crystalline iron minerals in biochars, which likely promoted Fe(III) reduction and persulfate activation. Our results highlight the potential for fine-tuning the redox properties of biochar, e.g., by ash amendment to a woody feedstock, enabling tailored performance for specific water treatment applications. KW - Persistent free radicals KW - Redox-active moieties KW - Fenton-like systems PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634504 DO - https://doi.org/10.1016/j.seppur.2025.133634 SN - 1383-5866 VL - 374 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-63450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana A1 - Fink, Friedrich T1 - Biobased and biodegradable polymers - sustainability and circular economy N2 - The presentation shows recent results on the synthesis and modification of environmentally relevant polymers based on renewable resources and the associated development of robust, high quality analytical methods. The first topic presents analytical results for star-shaped polylactides with different degrees of functionalisation. It is shown how liquid chromatography and mass spectrometry methods complement each other in a proven way to obtain accurate molar masses and to quantify chemically heterogeneous species. The second part presents an approach to incorporate lignin into epoxy matrices to obtain covalently adaptable epoxy networks that can be reprocessed and reused. T2 - 11th International Symposium on the Separation and Characterization of Natural and Synthetic Macromolecules CY - Amsterdam, Netherlands DA - 21.01.2025 KW - Polylactides KW - Ligninbased thermosets KW - MALDI-TOF-MS KW - Gradient elution liquid adsorption chromatography KW - Atomic force spectroscopy KW - FT-IR PY - 2025 AN - OPUS4-62532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - Bhattacharya, Biswajit A1 - de Oliveira Guilherme Buzanich, Ana A1 - Fink, Friedrich A1 - Feldmann, Ines A1 - ten Elshof, J. E. A1 - Emmerling, Franziska A1 - Stawski, Tomasz T1 - Thermally processed Ni-and Co-struvites as functional materials for proton conductivity N2 - We present how mesoporosity can be engineered in transition metal phosphate (TMPs) materials in a template-free manner. The method involves the transformation of a precursor metal phosphate phase, called M-struvite (NH4MPO4·6H2O, M = Mg2+, Ni2+, Co2+, NixCo1−x2+). It relies on the thermal decomposition of crystalline M-struvite precursors to an amorphous and simultaneously mesoporous phase, which forms during degassing of NH3 and H2O. The temporal evolution of mesoporous frameworks and the response of the metal coordination environment were followed by in situ and ex situ scattering and diffraction, as well as X-ray spectroscopy. Despite sharing the same precursor struvite structure, different amorphous and mesoporous structures were obtained depending on the involved transition metal. We highlight the systematic differences in absolute surface area, pore shape, pore size, and phase transitions depending on the metal cation present in the analogous M-struvites. The amorphous structures of thermally decomposed Mg-, Ni- and NixCo1−x-struvites exhibit high surface areas and pore volumes (240 m2 g−1 and 0.32 cm−3 g−1 for Mg and 90 m2 g−1 and 0.13 cm−3 g−1 for Ni). We propose that the low-cost, environmentally friendly M-struvites could be obtained as recycling products from industrial and agricultural wastewaters. These waste products could be then upcycled into mesoporous TMPs through a simple thermal treatment for further application, for instance in (electro)catalysis. KW - Struvite KW - Phosphates KW - Transition metals KW - Proton conductivity PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575862 DO - https://doi.org/10.1039/D3DT00839H SN - 1477-9226 SP - 1 EP - 13 PB - Royal Society of Chemisty (RSC) CY - London/Cambridge AN - OPUS4-57586 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -