TY - CONF A1 - Wille, Frank A1 - Moutarde, M. A1 - Apel, Andreas A1 - Ballheimer, Viktor A1 - Sterthaus, Jens T1 - Recent developments in standards and IAEA guidance material for package load attachment points N2 - For transport package design and operation according to IAEA regulations, the package shall be securely stowed and its retention system shall be capable to withstand load conditions of routine transport. The supporting IAEA Advisory Material SSG-26 provides information how to do that. Up to now package designers in different countries use other load factors for the design of attachment points than those specified in the IAEA guidance material. In particular the acceleration values vary between different countries and lead to difficulties during the validation of foreign approval certificates. Therefore the IAEA started a discussion process to review the existing guidance text. An international working group was constituted in 2013. Representatives came from different stakeholders, e.g. transport operators, competent authorities and modal organizations. The discussions concluded especially on the transport conditions which has to be considered for stowage design, including on the one hand the relevance of the load factors used for strength and fatigue analysis and on the other hand the criteria which have to be considered for the attachment points. Another standard with relevance to the load attachment of packages is ISO 10276. This standard deals with trunnion design, manufacturing and operational aspects. The regular standard revision phase started in 2017. An expert group discussed new state-of-the-art technology and proposed revised text for the ISO standard for international discussion. The paper describes relevant tie-down aspects, gives background argumentation, and tries to support harmonized application of the revised IAEA guidance material and future ISO 10276 standard. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2018 KW - Verzögerungswerte KW - Lastanschlag KW - Trunnion design KW - ISO KW - Retention PY - 2018 SP - 18511, 1 EP - 8 AN - OPUS4-45294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Wille, Frank A1 - Nehrig, Marko A1 - Feldkamp, Martin ED - Sorenson, K.B. T1 - Thermal performance of transportation packages for radioactive materials N2 - Prevention of damage caused by heat is one of the objectives during package safety evaluation. This chapter describes basics of heat transfer and major aspects of regulatory requirements. Package temperature criteria and fire test conditions are explained. Special package design features regarding material properties and safety evaluation concepts are discussed. Experimental fire testing is performed by pool fire or with the help of a furnace. Analysis by numerical or analytical approaches show temperature gradients and whether compliance with the regulatory requirements and specified design temperatures is met. The tightness of the package lid system influenced by geometry changes is in the focus of a holistic thermo-mechanical approach considering the entire mechanical and thermal load conditions according the regulatory requirements. KW - Package KW - Safety KW - Storage KW - Transport KW - Testing KW - Convection KW - Fire test KW - Heat KW - Insulation KW - Thermal analysis PY - 2015 SN - 978-1-78242-309-6 SN - 978-1-78242-322-5 DO - https://doi.org/10.1016/B978-1-78242-309-6.00008-3 N1 - Serientitel: Woodhead publishing series in energy – Series title: Woodhead publishing series in energy IS - 78 SP - Chapter 8, 107 EP - 121 PB - Woodhead Publ. AN - OPUS4-33842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Quercetti, Thomas A1 - Scheidemann, Robert T1 - Test Facilities for Radioactive Materials Transport and Storage Packagings at BAM N2 - BAM acts as authority and for service in safety assessment of packages for transport and storage of radioactive materials. We offer extensive test capabilities and application of analytical methods for design verification and simulation for all types of packages for the transport and storage of radioactive materials according with the international IAEA Regulations for the safe transport and for national storage acceptance criteria. BAM operates several test facilities for drop and stacking testing, leak testing and thermal testing. The large drop test tower allows dropping full-scale specimens up to 200,000 kg in any drop orientation as requested. The comprehensive test facilities combined with long-term experience, newest equipment and measurement devices according to the latest state-of-the-art technology ensures realisation of complex test campaigns for package safety evaluation. Beyond that, non-destructive and destructive material test devices and experts are available. Equipment and application of all kinds of typical measurement categories can be offered for testing campaigns. In recent years we performed testing of full-scale type B package models with complex handling and preparation procedures. The results were contributed for different package design approval procedures. Type A packages mainly designed for medical related transport purposes, were continuously tested according to the transport regulations over recent years as well. Moreover, we work on research topics with relevance to package safety. The mechanical behaviour of lid closure systems under transport and storage conditions and the thermal behaviour of impact limiters were recently of special importance for the assessment competencies of BAM and were investigated under use of our test facilities. The paper describes the test facilities and capabilities for package design safety evaluation at BAM and shows examples from our recent work. T2 - PATRAM 2022, 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - IAEA KW - Fire test KW - Drop testing KW - Transport KW - Package PY - 2023 SP - 1 EP - 12 AN - OPUS4-57967 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Wolff, Dietmar A1 - Droste, Bernhard A1 - Völzke, Holger T1 - Requirements for transport packages after interim storage N2 - In Germany the concept of dry interim storage of spent fuel and vitrified high active waste in dual purpose metal casks is implemented (currently for periods of up to 40 years). The casks being used have an approved package design in accordance with the international transport regulations. The license for dry storage is granted on the German Atomic Energy Act with respect to the guidelines of the German Reactor Safety Commission for dry interim storage of spent fuel. Currently part of the assessment process of the cask design for transport on public routes is to evaluate the suitability of the used materials with respect to their properties and their compatibility for possible transport periods. For transport on public routes during or after long term interim storage periods, it has to be ensured that the transport and storage casks fulfill the specifications of the transport approval or other sufficient properties which satisfy the proofs for the compliance of the safety objectives at that time. This paper describes the state-of-the-art technology in Germany and points out arising prospective challenges and which related questions have to be answered in future. Present research and knowledge concerning the long term behavior of transport and storage cask components (such as gaskets and shielding components) have to be consulted as well as experiences from interim cask storage operations. Challenges in the safety assessment are therefore i.e. the behavior of aged metal and elastomeric gaskets under IAEA test conditions to ensure that the results of drop tests can be transferred to the compliance of the safety objectives at the time of transport after the interim storage period (aged package). Assessment methods for the material compatibility, the behavior of fuel assemblies and the aging behavior of shielding parts (e. g. influence of radiation) are further issues as well. T2 - 52nd INMM Annual meeting CY - Palm Desert, CA, USA DA - 17.07.2011 KW - Transport package design KW - Interim storage KW - Inspections KW - Log term behavior KW - Dual purpose casks PY - 2011 SP - 1 EP - 9 AN - OPUS4-24172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Wolff, Dietmar A1 - Droste, Bernhard A1 - Völzke, Holger A1 - Baden, M. T1 - German approach and experience feedback of transport ability of SNF packages after interim storage N2 - In Germany the concept of dry interim storage of spent fuel in dual purpose metal casks is implemented, currently for periods of up to 40 years. The casks being used have an approved package design in accordance with the international transport regulations. The license for dry storage is granted on the German Atomic Energy Act with respect to the recently revised “Guidelines for dry interim storage of irradiated fuel assemblies and heat-generating radioactive waste in casks” by the German Waste management Commission (ESK). For transport on public routes between or after long term interim storage periods, it has to be ensured that the transport and storage casks fulfil the specifications of the transport approval or other sufficient properties which satisfy the proofs for the compliance of the safety objectives at that time. In recent years the validation period of transport approval certificates for manufactured, loaded and stored packages were discussed among authorities and applicants. A case dependant system of 3, 5 and 10 years was established. There are consequences for the safety cases in the Package Design Safety Report including evaluation of long term behavior of components and specific operating procedures of the package. Present research and knowledge concerning the long term behavior of transport and storage cask components have to be consulted as well as experiences from interim cask storage operations. Challenges in the safety assessment are e.g. the behavior of aged metal and elastomeric gaskets under IAEA test conditions to ensure that the results of drop tests can be transferred to the compliance of the safety objectives at the time of transport after the interim storage period. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 KW - Storage KW - Transport KW - Lagerung KW - Verpackung KW - Radioactive material PY - 2013 SP - 1 EP - 9 PB - Omnipress AN - OPUS4-30159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wille, Frank A1 - Wolff, Dietmar A1 - Droste, Bernhard A1 - Völzke, Holger A1 - Baden, M. T1 - German approach and feedback on experience of transportability of SNF packages after interim storage N2 - In Germany, the concept of dry interim storage of spent fuel in dual purpose metal casks is implemented, currently for periods of up to 40 years. The casks being used have an approved package design in accordance with the international transport regulations. The license for dry storage is granted on the German Atomic Energy Act with respect to the recently revised 'Guidelines for dry interim storage of irradiated fuel assemblies and heat-generating radioactive waste in casks' by the German Waste management Commission. For transport on public routes between or after long term interim storage periods, it has to be ensured that the transport and storage casks fulfil the specifications of the transport approval or other sufficient properties, which satisfy the proofs for the compliance of the safety objectives at that time. In recent years, the validation period of transport approval certificates for manufactured, loaded and stored packages were discussed among authorities and applicants. A case dependent system of 3, 5 and 10 years was established. There are consequences for the safety cases in the Package Design Safety Report, including evaluation of long term behaviour of components and specific operating procedures of the package. The present research and knowledge concerning the long term behaviour of transport and storage cask components have to be consulted as well as experiences from interim cask storage operations. Challenges in the safety assessment are e.g. the behaviour of aged metal and elastomeric gaskets under IAEA test conditions to ensure that the results of drop tests can be transferred to the compliance of the safety objectives at the time of transport after the interim storage period. Assessment methods for the material compatibility, the behaviour of fuel assemblies and the aging behaviour of shielding parts are issues as well. This paper describes the state of the art technology in Germany, explains recent experience on transport preparation after interim storage and points out arising prospective challenges. KW - Radioactive material storage KW - Dry storage KW - Interim storage KW - Cask design KW - Radioactive material transport KW - Regulation KW - Operating procedures KW - Package KW - Safety KW - Storage KW - Transport KW - Lagerung KW - Spent fuel PY - 2014 DO - https://doi.org/10.1179/1746510914Y.0000000064 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 25 IS - 2 SP - 55 EP - 59 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-33834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wolff, Dietmar A1 - Völzke, Holger A1 - Wille, Frank A1 - Droste, Bernhard T1 - Extended storage after long-term storage N2 - Existing spent nuclear fuel (SF) and high active waste (HAW) management policies and practices worldwide are the result of past presumptions that sufficient reprocessing and/or disposal capacity would be available in the near term. Consequently, in the past many countries have developed specific solutions for different periods of time due to their individual national nuclear policies. In Germany the concept of dry interim storage in dual purpose metal casks before disposal is being pursued for SF and HAW management and transport and storage licenses have been issued accordingly. The current operation licenses for existing storage facilities have been granted for a storage period of up to 40 years. This concept has demonstrated its suitability for over 20 years so far. Relevant safety requirements haven been assessed for the short-term as well as for the long-term for site-specific operational and accidental storage conditions. But in the meantime significant delays in the national repository siting procedure occured which will make extended storage periods necessary in the future. This paper describes the current situation in Germany with regard to dry cask storage and focuses on current perspectives considering regulatory, technical, and scientific aspects for storage license renewal. Since there is one case of a storage license limitation to only 20 years due to administrative reasons, first experience is currently gathered in case of an expiring storage license. Subsequent license options have been pursued intensively including the extension of the initial storage license as well as shipping all casks to another storage facility considering an extended storage period at that storage facility as well. All safety relevant aspects have to be reviewed on basis of the current state-of-the-art which might be different from the initial safety demonstrations. That includes new safety assessment standards as well as improved knowledge base. Major issues are e.g. improved accident scenario analyses, assessment methods, and consideration of aging effects from previous operation periods. Inspection programs with respect, e.g. to bolts and seals to verify leak-tightness and lid screw pre-stress have been initiated to demonstrate proper cask conditions for extended storage as well as transportation to another storage facility. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 KW - Extended storage KW - Long-term storage KW - Dual purpose cask PY - 2013 SP - Paper 184, 1 EP - 12 PB - Omnipress AN - OPUS4-30242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Weber, Mike A1 - Wille, Frank T1 - Finite element mesh design of a cylindrical cask under puncture drop test conditions N2 - Transport casks for radioactive materials have to withstand the 9 m drop test, 1 m puncture drop test and dynamic crush test with regard to the mechanical requirements according to the IAEA regulations. The safety assessment of the package can be carried out on the basis of experimental investigations with prototypes or models of appropriate scale, calculations, by reference to previous satisfactory safety demonstrations of a sufficiently similar nature or a combination of these methods. Computational methods are increasingly used for the assessment of mechanical test scenarios. However, it must be guaranteed that the calculation methods provide reliable results. Important quality assurance measures at BAM are given concerning the preparation, run and evaluation of a numerical analysis with reference to the appropriate guidelines. Hence, a successful application of the finite element method requires a suitable mesh. An analysis of the 1 m puncture drop test using successively refined finite element meshes was performed to find an acceptable mesh size and to study the mesh convergence using explicit dynamic finite element codes. The finite element model of the cask structure and the puncture bar is described. At the beginning a coarse mesh was created. Then this mesh was refined in two steps. In each step the size of the elements was bisected. The deformation of the mesh and the stresses were evaluated dependent on the mesh size. Finally, the results were extrapolated to an infinite fine mesh or the continuous body, respectively. The uncertainty of the numerical solution due to the discretization of the continuous problem is given. A safety factor is discussed to account for the uncertainty. The calculation results are compared with experimental data from a puncture drop test with a half-scale model of a cylindrical cask. This paper supports the convergence studies of the Task Group on Computational Modeling for Explicit Dynamics reporting to the ASME BPV Code Working Group on Design Methodology. T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - IAEA puncture drop test KW - Numerical analysis KW - Verification KW - Explicit dynamics PY - 2010 SP - 1 EP - 8 (Session T45 / Paper 219) AN - OPUS4-23843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zencker, Uwe A1 - Weber, Mike A1 - Wille, Frank T1 - Finite element mesh design of a cylindrical cask under puncture drop test conditions N2 - Transport casks for radioactive materials have to withstand the 9 m drop test, 1 m puncture drop test and dynamic crush test with regard to the mechanical requirements according to the IAEA regulations. The safety assessment of the package can be carried out on the basis of experimental investigations with prototypes or models of appropriate scale, calculations, by reference to previous satisfactory safety demonstrations of a sufficiently similar nature or a combination of these methods. Computational methods are increasingly used for the assessment of mechanical test scenarios. However, it must be guaranteed that the calculation methods provide reliable results. Important quality assurance measures at the Federal Institute for Materials Research and Testing are given concerning the preparation, run and evaluation of a numerical analysis with reference to the appropriate guidelines. Hence, a successful application of the finite element (FE) method requires a suitable mesh. An analysis of the 1 m puncture drop test using successively refined FE meshes was performed to find an acceptable mesh size and to study the mesh convergence using explicit dynamic FE codes. The FE model of the cask structure and the puncture bar is described. At the beginning a coarse mesh was created. Then this mesh was refined in two steps. In each step the size of the elements was bisected. The deformation of the mesh and the stresses were evaluated dependent on the mesh size. Finally, the results were extrapolated to an infinite fine mesh or the continuous body, respectively. The uncertainty of the numerical solution due to the discretisation of the continuous problem is given. A safety factor is discussed to account for the uncertainty. KW - IAEA puncture drop test KW - Cylindrical cask KW - FE mesh refinement KW - Explicit dynamics KW - Numerical analysis PY - 2011 DO - https://doi.org/10.1179/1746510911Y.0000000008 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 22 IS - 2 SP - 112 EP - 116 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-24016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -