TY - CONF A1 - Schubert, Sven A1 - Komann, Steffen A1 - Neumann, Martin A1 - Reichardt, Adrian A1 - Müller, Lars A1 - Wille, Frank T1 - Ageing management measures of transport packages for radioactive materials T2 - Proceedings of Conference RAMTRANS 2024 N2 - The consideration of ageing mechanisms is with integration into the IAEA-requirements now obligatory for the design of transport packages. For packages intended to be used for shipment after storage the consideration of the effects of ageing mechanisms during storage in safety analyses and the implementation of corresponding instructions for operation and maintenance are required. Therefore, these packages have been maintained during storage in a manner that all requirements specified in the IAEA-requirements and in the applicable certificates of approval have been fulfilled. BAM is the competent authority in Germany for evaluating the thermal and mechanical design of packages for the transport of radioactive materials. In this context, BAM also evaluates the aging mechanisms and aging effects occurring during the long-term storage period of such transport packages. BAM has developed a guideline for the implementation of ageing assessment and of the measures for ageing management into the approval procedure based on IAEA-requirements. The goal of the presented paper is to introduce this guideline and the general approach for ageing management requirements and to describe the application to a specific package design. The type and amount of the ageing management not only depend on the use of the packaging, but also on the accessibility of the components that are considered in the ageing assessment. The different operating phases of a packaging are considered for the ageing assessment, such as loading, interim storage or transport. The implementation of measures for ageing management is divided into three levels – systemic measures, package design related measures and documentation. The systemic measures are attributed to the general management system and define the whole activities for organization of ageing management like structure, responsibilities, documentation, reports and evaluation. The package design related measures are defined in an ageing management plan. These measures shall ensure that the anticipated changes of the package design under consideration of ageing effects still complies with the design approval specification. Therefore, an ageing surveillance program and, if necessary, a gap analysis program shall be developed. The ageing management documentation ensures the continuous documentation of the compliance of a specific package to the approved package design, comprising mainly records resulting from operation and surveillance. T2 - RAMTRANS 2024 CY - London, United Kingdom DA - 15.05.2024 KW - Radioactive Materials KW - Ageing Management KW - Transport Packages KW - Dual Purpose Casks PY - 2024 VL - 2024 SP - 1 EP - 8 PB - Nuclear Institute CY - London AN - OPUS4-60186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Martin A1 - Gröke, Carsten A1 - Wille, Frank T1 - BAM-GGR 016 - Auf dem aktuelle Stand JF - Gefahrgut N2 - Die BAM-GGR 016 zur Anerkennung und Überwachung von Managementsystemen für nicht zulassungspflichtige Verssandstücke für radioaktive Stoffe wurde kürzliche erstmals revidiert. KW - BAM-GGR 016 KW - Überwachung KW - Anerkennung KW - Radioaktive Stoffe PY - 2024 SN - 0944-6117 IS - 5 SP - 11 EP - 13 PB - Verlag Heinrich Vogel CY - München AN - OPUS4-59998 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Gleim, Tobias A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Combustion Chamber Design for Encapsulated Wood-Component Testing T2 - Wood & Fire Safety 2024 - Proceedings of the 10th International Conference on Wood & Fire Safety 2024 N2 - Heavy-weight packages for the safe transport of radioactive material are equippedwith impact limiters often built ofwood-filled steel sheet structures to fulfil the requirements of the International Atomic Energy Agency (IAEA) regulations. The requirements definemechanical tests followed by a thermal test, including criteria ensuring the package design’s ability to withstand severe accidents and provide a high level of technical safety. Impact limiters are a package component mainly designed for the packages to withstand severe mechanical accident scenarios. In drop tests the impact limiters absorb the kinetic energy during impact of the package. The package must then - with its pre-damaged impact limiters - endure a thermal test defined precisely in the IAEA regulations as a 30-min fully engulfing 800 °C-fire. After the fire, a wood-filled impact limiter may continue to release thermal energy from an ongoing combustion process, defining relevant package temperatures. The energy flow from a possible burning impact limiter to the package is important for the safety evaluation of transport packages. To investigate the combustion behaviour of densely packed layers of spruce wood, encapsulated in pre-damaged cylindrical metal enclosures, a test set-up has been realised. The set-up consists of a combustion chamber to perform these tests under defined boundary conditions. The temperature development of the test specimens will be observed fromoutside with a thermographic imager, with HD-Cameras, and the mass loss will be measured during the entire test. Airflow conditions in the combustion chamber are analysed using Computational Fluid Dynamics (CFD) calculations in OpenFOAM. The planned combustion test setup is described. T2 - Wood & Fire Safety 2024 CY - Štrbské Pleso, Slovakia DA - 12.05.2024 KW - Fire KW - Combustion KW - Smouldering PY - 2024 SN - 978-3-031-59176-1 SN - 978-3-031-59179-2 SN - 978-3-031-59177-8 DO - https://doi.org/10.1007/978-3-031-59177-8 SP - 215 EP - 222 PB - Springer Nature Switzerland AG CY - Gewerbestrasse 11, 6330 Cham, Switzerland AN - OPUS4-60226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Musolff, André A1 - Werner, Jan A1 - Wille, Frank T1 - Enhancement of Fire Test Stand Performance at Test Site of BAM: Installation and Evaluation of an Augmented System with a Fire Reference Package T2 - Wood & Fire Safety 2024 - Proceedings of the 10th International Conference on Wood & Fire Safety 2024 N2 - Packages for the transport of radioactive material are designed to en-dure severe accidents. Packages for the transportation of radioactive material must demonstrate that the package can withstand certain prescribed tests from the IAEA Regulations [1]. In addition to mechanical tests, a thermal test in form of a fire test must be carried out. As packages to be tested at BAM are signifi-cantly larger than previous package designs, BAM has expanded an existing fire test stand. A modular concept is chosen, which means that the arrangement of the burner nozzles can be adapted to the test specimen. The dimensions of the burner rings, the type, the orientation and the number of burner nozzles can be varied depending on the test specimen. In addition, various pumps can be used to set the corresponding mass flow. With the help of a calorimeter test, the fire test stand can be qualified for a specific size of packages regarding the boundary conditions of the IAEA Regulations [1]. Due to the typically wood filled impact limiters in German package designs, a fire test is necessary, as experiments have shown that possible openings that occurred during a mechanical test contributed to the igni-tion of the wood filled impact limiters within the prescribed 30 minutes of the IAEA Regulations [1]. From a series of experiments, two experiments are pre-sented to show the possibilities to obtain different temperatures and temperature rates in the test specimen. In addition to sensor data, the heat flux into the package is calculated to verify that the IAEA boundary conditions are satisfied. In addition to the temperature data, other data such as wind speed and wind direction are also recorded to explain subsequent effects in the measurement data in a comprehen-sible manner. T2 - Wood & Fire Safety 2024 CY - Strbske Pleso, Slowakei DA - 13.05.2024 KW - IAEA Regu-lations KW - Fire Test Stand KW - Accident Scenario KW - Fire Qualification PY - 2024 UR - https://link.springer.com/book/9783031591761 SN - 978-3-031-59176-1 SN - 978-3-031-59179-2 SN - 978-3-031-59177-8 VL - 1 SP - 1 EP - 8 PB - Springer Cham AN - OPUS4-60101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Gleim, Tobias A1 - Wille, Frank T1 - Evaluation of Heat Fluxes in Fire Reference Test Conducted in BAM Propane Gas Fire Test Facility T2 - Transactions of SMiRT 27 (27th conference on Structural Mechanics in Reactor Technology) N2 - Packages for the transport of intermediate- and high-level radioactive waste are designed to withstand severe accidents. The International Atomic Energy Agency (IAEA) has established specific mechanical and thermal tests. Packages for the transport of radioactive material must withstand these tests to comply with the Regulations for the Safe Transport of Radioactive Materials IAEA [IAEA (2018)]. A fire reference package was developed with the primary objective to demonstrate that the fire meets the regulatory requirements. Another aim is to characterise the boundary conditions of the actual fire as input parameters for thermo-mechanical simulations. A simple method to characterise the boundary conditions of a real steady state fire with a fire reference package is presented. The thermal test mainly consists of a 30 minute fully engulfing 800°C pool fire or an equally severe fire, such as a propane gas fire. The fire reference tests are performed prior to the actual fire test with the real package. The heat fluxes into the package depend substantially on the fire characteristics and the surface temperature of the package. To investigate local and overall heat fluxes over a wide range of surface temperatures in this test facility a fire reference package was designed for repeated use. The fire reference package presented in this paper represents the outer geometry of a small transport container for radioactive material and is used as a device in civil engineering. It is designed as a closed steel sheet cylinder with a wall thickness of 10 mm, a length of 182 mm and a diameter of 102 mm. The package was instrumented with thermocouples and filled with heat resistant insulation material. Open-air fire tests were performed in a BAM propane gas fire test facility with the fire reference package. The measured temperatures are used to determine the changes of heat fluxes into the fire reference package in relation to the package surface temperature. The calculated heat fluxes allow its fitting to express the thermal exposure as simple mathematical boundary condition. Therefore, in a first approach, fire properties such as adiabatic surface temperature (AST) as proposed by Wickström et al. (2007), convection coefficient and emissivity are determined mathematically fitting the heat flux development presented in this paper. The evaluated results provide an initial picture of local fire characteristics of the conducted propane gas fire and are a further development of previous works from Feldkamp et al. (2020). The results can be used in thermal and thermo-mechanical models to simulate the load on the real transport package in fire. The test shows that the examined propane gas fire covers the IAEA-fire over a wide range of surface temperatures with the chosen test stand parameters. T2 - SMiRT 27 (27th conference on Structural Mechanics in Reactor Technology) CY - Yokohama, Japan DA - 03.03.2024 KW - Fire KW - Propane KW - Heat Flux KW - Fire Reference PY - 2024 SP - 1 EP - 10 PB - IASMiRT AN - OPUS4-59679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Neumeyer, Tino A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Investigations of Aged Metal Seals for Transport Package Safety Assessment N2 - Acceptable limits for activity release from transport casks for high-level radioactive material specified in the IAEA regulations must be kept by the integrity of cask body and the cask sealing system. BAM as the German competent authority for mechanical, thermal and containment assessment of packages liable for approval verifies the activity release compliance with the regulatory limits. The specification of conservative package design leakage rates is one of the most important aspects in assessment. Metal seals of the Helicoflex® Type are usually used to ensure the required package tightness for both, storage, and transport of the cask before and after storage. Due to the long-term use the seal behavior is influenced by temperature and time. The mechanical and thermal loadings associated with the routine, normal and accident conditions of transport specified in the regulations can have a significant effect on the leak tightness of the sealing system. Whereas the safety for application of new, non- aged Helicoflex® seals is verified sufficiently, there are still technical data gaps concerning the efficiency of aged Helicoflex® seals. BAM performed experiments to learn more about the sealing efficiency of aged Helicoflex® seals with Aluminum and Silver outer jackets. The seals were compressed in test-flanges and for artificial ageing the complete flange systems were stored in an oven for several month at a high temperature. After this ageing procedure the flanges were opened completely, the seals were moved a little to vary the contact area, and the flanges were compressed again. During the compression and decompression tests after the aging, load-deformation characteristics of the seals, and leakage rates were measured. With these tests a load situation was simulated, which can occur in the regulatory drop test of the cask: Under high impact loads the bolted lid can lift a little for a short moment, allowing a little movement of the seal, so that the contact area can change before compressing again. Details about test conditions and first results will be presented in the poster. T2 - RAMTrans 2024, 12th Internatiopnal Conference on the Transport , Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2024 KW - Seals KW - Ageing KW - Radioaktiv PY - 2024 AN - OPUS4-60112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Feldkamp, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Transport of HLW canisters on sea vessels T2 - Proceedings of RAMTrans 2024 N2 - Germany had been transporting spent fuel to the reprocessing plant in Sellafield and La Hague for decades until around 2005. Resulting from the obligation to take back the vitrified high-level waste from reprocessing six CASTOR® HAW28M filled with 168 canisters with radioactive waste in vitrified form were transported from Sellafield to the interim storage facility Biblis in 2020. Rail wagons were used for the transport to the port in Barrow-in-Furness, where they were loaded into a dedicated seagoing vessel, certified as INF Class 3 according to the INF Code. This was the first time that vitrified high level waste with considerable heat load was transported under a German design approval certificate. BAM was involved in the authority assessment of the conditions for the sea transport. For the first transport BAM required among others, assessment of temperature distribution during transport, logging of temperatures of cargo bays and graphical imaging of temperatures of the bay with the cask in order to ensure compliance with temperature specifications, e.g. maximal neutron absorber and gasket temperatures. Special interest was taken in the identification of possible events exceeding the specified temperatures considering the different philosophies of IMDG code and its supplement INF code regarding temperature control of hatches. Results show compliance with assumed conditions. T2 - RAMTrans 2024 CY - London, United Kingdom DA - 14.05.2024 KW - Transport KW - Spent nuclear fuel KW - Ship KW - Sea KW - High level waste PY - 2024 SP - 1 EP - 8 AN - OPUS4-60092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -