TY - JOUR A1 - Rieger, J. A1 - Colla, V. A1 - Matino, I. A1 - Branca, T. A. A1 - Stubbe, G. A1 - Panizza, A. A1 - Brondi, C. A1 - Falsafi, M. A1 - Hage, J. A1 - Wang, X. A1 - Voraberger, B. A1 - Fenzl, T. A1 - Masaguer, V. A1 - Faraci, E. L. A1 - di Sante, L. A1 - Cirilli, F. A1 - Loose, Florian A1 - Thaler, C. A1 - Soto, A. A1 - Frittella, P. A1 - Foglio, G. A1 - di Cecca, C. A1 - Tellaroli, M. A1 - Corbella, M. A1 - Guzzon, M. A1 - Malfa, E. A1 - Morillon, A. A1 - Algermissen, D. A1 - Peters, K. A1 - Snaet, D. T1 - Residue Valorization in the Iron and Steel Industries: Sustainable Solutions for a Cleaner and More Competitive Future Europe N2 - The steel industry is an important engine for sustainable growth, added value, and high-quality employment within the European Union. It is committed to reducing its CO2 emissions due to production by up to 50% by 2030 compared to 1990′s level by developing and upscaling the technologies required to contribute to European initiatives, such as the Circular Economy Action Plan (CEAP) and the European Green Deal (EGD). The Clean Steel Partnership (CSP, a public–private partnership), which is led by the European Steel Association (EUROFER) and the European Steel Technology Platform (ESTEP), defined technological CO2 mitigation pathways comprising carbon direct avoidance (CDA), smart carbon usage SCU), and a circular economy (CE). CE ap-proaches ensure competitiveness through increased resource efficiency and sustainability and consist of different issues, such as the valorization of steelmaking residues (dusts, slags, sludge) for internal recycling in the steelmaking process, enhanced steel recycling (scrap use), the use of secondary carbon carriers from non-steel sectors as a reducing agent and energy source in the steelmaking process chain, and CE business models (supply chain analyses). The current paper gives an overview of different technological CE approaches as obtained in a dedicated workshop called “Resi4Future—Residue valorization in iron and steel industry: sustainable solutions for a cleaner and more competitive future Europe” that was organized by ESTEP to focus on future challenges toward the final goal of industrial deployment. KW - Circular economy KW - Steelmaking residues KW - Clean steel PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530350 DO - https://doi.org/10.3390/met11081202 VL - 11 IS - 8 SP - 1202 PB - MDPI AN - OPUS4-53035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zou, Q. A1 - Marcelot, C. A1 - Ratel-Ramond, N. A1 - Yi, X. A1 - Roblin, P. A1 - Frenzel, Florian A1 - Resch-Genger, Ute A1 - Eftekhari, A. A1 - Bouchet, A. A1 - Coudret, C. A1 - Verelst, M. A1 - Chen, X. A1 - Mauricot, R. A1 - Roux, C. T1 - Heterogeneous Oxysulfide@Fluoride Core/ Shell Nanocrystals for Upconversion-Based Nanothermometry N2 - Lanthanide (Ln3+)-doped upconversion nanoparticles (UCNPs) often suffer from weak luminescence, especially when their sizes are ultrasmall (less than 10 nm). Enhancing the upconversion luminescence (UCL) efficiency of ultrasmall UCNPs has remained a challenge that must be undertaken if any practical applications are to be envisaged. Herein, we present a Ln3+-doped oxysulfide@fluoride core/shell heterostructure which shows efficient UCL properties under 980nm excitation and good stability in solution. Through epitaxial heterogeneous growth, a ∼4 nm optically inert β-NaYF4 shell was coated onto ∼5 nm ultrasmall Gd2O2S:20%Yb,1%Tm. These Gd2O2S:20%Yb,1%Tm@NaYF4 core/shell UCNPs exhibit a more than 800-fold increase in UCL intensity compared to the unprotected core, a 180-fold increase in luminescence decay time of the 3H4 → 3H6 Tm3+ transition from 5 to 900 μs, and an upconversion quantum yield (UCQY) of 0.76% at an excitation power density of 155 W/cm2. Likewise, Gd2O2S:20%Yb,2%Er@NaYF4 core/shell UCNPs show a nearly 5000-fold increase of their UCL intensity compared to the Gd2O2S:20%Yb,2%Er core and a maximum UCQY of 0.61%. In the Yb/Er core−shell UCNP system, the observed variation of luminescence intensity ratio seems to originate from a change in lattice strain as the temperature is elevated. For nanothermometry applications, the thermal sensitivities based on thermally coupled levels are estimated for both Yb/Tm and Yb/Er doped Gd2O2S@NaYF4 core/shell UCNPs. KW - Upconversion nanoparticle KW - Nanosensor KW - Lanthanide KW - Surface coating KW - Quantum yield KW - Photophysic PY - 2022 DO - https://doi.org/10.1021/acsnano.2c02423 SN - 1936-0851 SP - 1 EP - 11 PB - ACS Publications AN - OPUS4-55440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Olscher, C. A1 - Jandric, A. A1 - Zafiu, C. A1 - Part, Florian T1 - Evaluation of marker materials and spectroscopic methods for tracer-based sorting of plastic wastes N2 - Plastics are a ubiquitous material with good mechanical, chemical and thermal properties, and are used in all industrial sectors. Large quantities, widespread use, and insufficient management of plastic wastes lead to low recycling rates. The key challenge in recycling plastic waste is achieving a higher degree of homogeneity between the different polymer material streams. Modern waste sorting plants use automated sensor-based sorting systems capable to sort out commodity plastics, while many engineering plastics, such as polyoxymethylene (POM), will end up in mixed waste streams and are therefore not recycled. A novel approach to increasing recycling rates is tracer-based sorting (TBS), which uses a traceable plastic additive or marker that enables or enhances polymer type identification based on the tracer’s unique fingerprint (e.g., fluorescence). With future TBS applications in mind, we have summarized the literature and assessed TBS techniques and spectroscopic detection methods. Furthermore, a comprehensive list of potential tracer substances suitable for thermoplastics was derived from the literature. We also derived a set of criteria to select the most promising tracer candidates (3 out of 80) based on their material properties, toxicity profiles, and detectability that could be applied to enable the circularity of, for example, POM or other thermoplastics. KW - Circular economy KW - Post-consumer plastic waste KW - Plastic waste recycling KW - Tracer-based sorting KW - Sensor-based sorting KW - Spectroscopy KW - Fluorescent markers KW - Thermoplastics KW - Polyoxymethylene PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555624 DO - https://doi.org/10.3390/polym14153074 SN - 2073-4360 VL - 14 SP - 1 EP - 20 PB - MDPI CY - Basel AN - OPUS4-55562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lone, S. A. A1 - Muck, M. A1 - Fosodeder, P. A1 - Mardare, C.C. A1 - Florian, Camilo A1 - Weth, A. A1 - Krüger, Jörg A1 - Steinwender, C. A1 - Baumgartner, W. A1 - Bonse, Jörn A1 - Heitz, J. A1 - Hassel, A.W. T1 - Impact of Femtosecond Laser Treatment Accompanied with Anodization of Titanium Alloy on Fibroblast Cell Growth N2 - Herein, Ti6Al4V alloy is surface modified by femtosecond laser ablation. The microstructure image obtained by secondary electron microscopy reveals a combination of micrometer spikes or cones superimposed by nanoripples (laser‐induced periodic surface structures). To make the surface hydrophilic, anodization is performed resulting in further smoothness of microstructure and a final thickness of 35 ± 4 nm is estimated for oxide produced after anodization at 10 V (scan rate = 0.1 V s−1) versus standard hydrogen electrode. The obtained electrochemically active surface area (ECSA) is approximately 8 times larger compared with flat mirror polished Ti6Al4V surface. Combined chemical analysis by Pourbaix diagram and X‐ray photoelectron spectroscopy (XPS) analyses reveal that titanium and aluminum are passivating into TiO2 and Al2O3, but the dissolution of aluminum in the form of solvated ion is inevitable. Finally, cell seeding experiments on anodized and laser‐treated titanium alloy samples show that the growth of murine fibroblast cells is significantly suppressed due to unique surface texture of the laser‐treated and anodized titanium alloy sample. KW - Anodization KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures, LIPSS KW - Ti6Al4V alloys KW - X-ray photoelectron spectroscopy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510263 DO - https://doi.org/https://doi.org/10.1002/pssa.201900838 SN - 1862-6300 SN - 1862-6319 VL - 217 IS - 13 SP - 1900838-1 EP - 1900838-9 PB - WILEY-VCH Verlag CY - Weinheim, Germany AN - OPUS4-51026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kirner, Sabrina V. A1 - Hermens, U. A1 - Mimidis, A. A1 - Skoulas, E. A1 - Florian, C. A1 - Hischen, F. A1 - Plamadeala, C. A1 - Baumgartner, W. A1 - Winands, K. A1 - Mescheder, H. A1 - Krüger, Jörg A1 - Solis, J. A1 - Siegel, J. A1 - Stratakis, E. A1 - Bonse, Jörn T1 - Mimicking bug-like surface structures and their fluid transport produced by ultrashort laser pulse irradiation of steel N2 - Ultrashort laser pulses with durations in the fs-to-ps range were used for large area surface processing of steel aimed at mimicking the morphology and extraordinary wetting behaviour of bark bugs (Aradidae) found in nature. The processing was performed by scanning the laser beam over the surface of polished flat sample surfaces. A systematic variation of the laser processing parameters (peak fluence and effective number of pulses per spot diameter) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, i.e., LIPSS, grooves, spikes, etc.). Moreover, different laser processing strategies, varying laser wavelength, pulse duration, angle of incidence, irradiation atmosphere, and repetition rates, allowed to achieve a range of morphologies that resemble specific structures found on bark bugs. For identifying the ideal combination of parameters for mimicking bug-like structures, the surfaces were inspected by scanning electron microscopy. In particular, tilted micrometre-sized spikes are the best match for the structure found on bark bugs. Complementary to the morphology study, the wetting behaviour of the surface structures for water and oil was examined in terms of philic/ phobic nature and fluid transport. These results point out a route towards reproducing complex surface structures inspired by nature and their functional response in technologically relevant materials. KW - Biomometics KW - Surface wetting KW - Steel KW - Bug KW - Laser-induced periodic surface structures KW - Fluid transport KW - Femtosecond laser ablation PY - 2017 DO - https://doi.org/10.1007/s00339-017-1317-3 SN - 0947-8396 SN - 1432-0630 VL - 123 IS - 12 SP - 754, 1 EP - 13 AN - OPUS4-42817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stratakis, E. A1 - Bonse, Jörn A1 - Heitz, J. A1 - Siegel, J. A1 - Tsibidis, G.D. A1 - Skoulas, E. A1 - Papadopoulos, A. A1 - Mimidis, A. A1 - Joel, A.-C. A1 - Comanns, P. A1 - Krüger, Jörg A1 - Florian, C. A1 - Fuentes-Edfuf, Y. A1 - Solis, J. A1 - Baumgartner, W. T1 - Laser engineering of biomimetic surfaces N2 - The exciting properties of micro- and nano-patterned surfaces found in natural species hide a virtually endless potential of technological ideas, opening new opportunities for innovation and exploitation in materials science and engineering. Due to the diversity of biomimetic surface functionalities, inspirations from natural surfaces are interesting for a broad range of applications in engineering, including phenomena of adhesion, friction, wear, lubrication, wetting phenomena, self-cleaning, antifouling, antibacterial phenomena, thermoregulation and optics. Lasers are increasingly proving to be promising tools for the precise and controlled structuring of materials at micro- and nano-scales. When ultrashort-pulsed lasers are used, the optimal interplay between laser and material parameters enables structuring down to the nanometer scale. Besides this, a unique aspect of laser processing technology is the possibility for material modifications at multiple (hierarchical) length scales, leading to the complex biomimetic micro- and nano-scale patterns, while adding a new dimension to structure optimization. This article reviews the current state of the art of laser processing methodologies, which are being used for the fabrication of bioinspired artificial surfaces to realize extraordinary wetting, optical, mechanical, and biological-active properties for numerous applications. The innovative aspect of laser functionalized biomimetic surfaces for a wide variety of current and future applications is particularly demonstrated and discussed. The article concludes with illustrating the wealth of arising possibilities and the number of new laser micro/nano fabrication approaches for obtaining complex high-resolution features, which prescribe a future where control of structures and subsequent functionalities are beyond our current imagination. KW - Biomimetic surfaces KW - Laser processing KW - Surface functionalization KW - Bioinspiration KW - Bionic materials PY - 2020 DO - https://doi.org/10.1016/j.mser.2020.100562 SN - 0927-796X VL - 141 SP - 100562-1 EP - 100562-47 PB - Elsevier B.V. AN - OPUS4-50927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mühlhan, C. A1 - Weidner, Steffen A1 - Friedrich, Jörg Florian A1 - Nowack, H. T1 - Improvement of bonding properties of polypropylene by low-pressure plasma treatment PY - 1999 SN - 0257-8972 VL - 116-119 SP - 783 EP - 787 PB - Elsevier Science CY - Lausanne AN - OPUS4-6982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heise, C. A1 - Schedler, U. A1 - Wettmarshausen, Sascha A1 - Friedrich, Jörg Florian T1 - Plasma-brominated cyclo-olefin polymer slides: Suiitable macroinitiators for activator regenerated by electron transfer/atom radical transfer polymerization N2 - Activators regenerated by electron transfer–atom radical transfer polymerization (ATRP) as a controlled living polymerization are distinguished by their acceptance of small amounts of transition-metal complexes and oxygen and by their tolerance of reducing agents at a high concentration. The precondition of all ATRP applications is the use of homolytic or heterolytic cleavable halides as a dormant species; this allows the propagation of monomer chains. Hence, alkyl bromides are slightly cleavable and are the preferred initiators for ATRP. The bromination of polymer slides used as macroinitiators was carried out under gentle bromoform plasma conditions. This led to an oxidation-resistant stable bromine layer. More than 20 bromines per 100 carbons on the polymer scaffold were permanently bound to the substrate after plasma treatment. The resulting amounts of secondary and tertiary bromines on the polymer scaffold exhibited a suitable macroinitiator concentration for the surface-initiated polymerization of methyl methacrylate and glycidyl methacrylate. KW - Copolymers KW - Functionalization of polymers KW - Grafting KW - Monolayers and polymer brushes KW - Radical polymerization PY - 2014 UR - http://onlinelibrary.wiley.com/doi/10.1002/app.40662/full DO - https://doi.org/10.1002/APP.40662 SN - 0021-8995 SN - 1097-4628 VL - 131 IS - 16 SP - 40662-1 EP - 40662-10 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-30577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Homann, C. A1 - Krukewitt, Lisa A1 - Frenzel, Florian A1 - Grauel, Bettina A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Haase, M. T1 - Aufwärtskonvertierende NaYF4:Yb,Er/NaYF4‐Kern/Schale‐Nanokristalle mit hoher Lumineszenzquantenausbeute N2 - Eine modifizierte Syntheseroute auf der Basis wasserfreier Seltenerdacetate wurde zur Synthese aufwärtskonvertierender Kern/Schale‐Nanokristalle mit mittleren Größen zwischen 15 bis 45 nm eingesetzt. Die nahezu monodispersen Partikel bestehen aus einem NaYF4:Yb,Er‐Kern, dotiert mit 18 % Yb3+ und 2 % Er3+, und einer inerten Schale aus NaYF4, wobei die Dicke der Schale dem jeweiligen Radius des Kernpartikels entspricht. Absolutmessungen der Photolumineszenz‐Quantenausbeuten bei verschiedenen Anregungsleistungsdichten zeigen, dass die Quantenausbeuten von 45 nm Kern/Schale‐Partikeln schon fast an die Quantenausbeute des mikrokristallinen aufwärtskonvertierenden Leuchtstoffs heranreichen. Kleinere Kern/Schale‐Partikel, die nach der gleichen Methode hergestellt wurden, zeigen nur eine moderate Abnahme der Quantenausbeute. Beispielsweise ist die Quantenausbeute von 15 nm großen Kern/Schale‐Partikeln bei hohen Leistungsdichten (100 W cm−2) nur um einen Faktor drei kleiner als die des mikrokristallinen Leuchtstoffpulvers und um ungefähr einen Faktor 10 kleiner bei niedrigen Leistungsdichten (1 W cm−2). KW - Nicht lineare Prozesse KW - Nanopartikel KW - Quantenausbeute PY - 2018 DO - https://doi.org/10.1002/ange.201803083 VL - 130 IS - 28 SP - 8901 EP - 8905 PB - Wiley VCH Verlag AN - OPUS4-45573 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Homann, C. A1 - Krukewitt, Lisa A1 - Frenzel, Florian A1 - Grauel, Bettina A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Haase, M. T1 - NaYF4:Yb,Er/NaYF4 Core/Shell Nanocrystals with High Upconversion Luminescence Quantum Yield N2 - Upconversion core/shell nanocrystals with different mean sizes ranging from 15 to 45 nm were prepared via a modified synthesis procedure based on anhydrous rare‐earth acetates. All particles consist of a core of NaYF4:Yb,Er, doped with 18 % Yb3+ and 2 % Er3+, and an inert shell of NaYF4, with the shell thickness being equal to the radius of the core particle. Absolute measurements of the photoluminescence quantum yield at a series of different excitation power densities show that the quantum yield of 45 nm core/shell particles is already very close to the quantum yield of microcrystalline upconversion phosphor powder. Smaller core/shell particles prepared by the same method show only a moderate decrease in quantum yield. The quantum yield of 15 nm core/shell particles, for instance, is reduced by a factor of three compared to the bulk upconversion phosphor at high power densities (100 W cm−2) and by approximately a factor of 10 at low power densities (1 W cm−2). KW - Core shell structure KW - Upconversion KW - Non lienear processes KW - Nanoparticle KW - Quantum yield PY - 2018 DO - https://doi.org/10.1002/anie.201803083 VL - 57 IS - 28 SP - 8765 EP - 8769 PB - Wiley-VCH AN - OPUS4-45574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fosodeder, P. A1 - Baumgartner, W. A1 - Steinwender, C. A1 - Hassel, A. W. A1 - Florian, Camilo A1 - Bonse, Jörn A1 - Heitz, J. T1 - Repellent rings at titanium cylinders against overgrowth by fibroblasts N2 - The invention of new miniaturized and smart medical implants continues in all medical fields, including miniaturized heart pacemakers. These implants often come with a titanium (Ti) casing, which may have to be removed after several months or years and shall therefore not be completely overgrown by cells or scar tissue after implantation. Scar tissue is mainly formed by fibroblast cells and extracellular matrix proteins like collagen produced by them. Suppression of fibroblast growth at Ti surfaces could be achieved by 800 nm femtosecond laser-ablation creating self-organized sharp spikes with dimensions in the 10 μm-range which are superposed by fine sub-μm parallel ripples. On flat Ti control samples, the best results regarding suppression of cell growth were obtained on spike-structures which were additionally electrochemically anodized under acidic conditions. When Ti cylinders with a diameter of 8 mm (similar as the pacemakers) were placed upright in a culture of murine fibroblasts, a multi-layer cell growth up to a height of at least 1.5 mm occurred within 19–22 days. We have demonstrated that a laser-structured and anodized ring around the Ti cylinder surface is an effective way to create a barrier that murine fibroblasts were not able to overgrow within this time. KW - Cell-repellent surfaces KW - Femtosecond laser-processing KW - Electrochemical treatment KW - Laser-induced micro- and nanostructures KW - Medical implants PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509966 DO - https://doi.org/10.1515/aot-2019-0070 SN - 2193-8576 SN - 2193-8584 VL - 9 IS - 3 (Topical issue: Laser micro- and nano-material processing - Part 2) SP - 113 EP - 120 PB - De Gruyter CY - Berlin AN - OPUS4-50996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martynenko, Irina V. A1 - Kusic, Dragana A1 - Weigert, Florian A1 - Stafford, S. A1 - Donnelly, F. C. A1 - Evstigneev, R. A1 - Gromova, Y. A1 - Baranov, A. V. A1 - Rühl, Bastian A1 - Kunte, Hans-Jörg A1 - Gun'ko, Y. K. A1 - Resch-Genger, Ute T1 - Magneto-fluorescent microbeads for bacteria detection constructed from superparamagnetic Fe3O4 nanoparticles and AIS/ZnS quantum dots N2 - The efficient and sensitive detection of pathogenic microorganisms in aqueous environments, such as water used in medical applications, drinking water, and cooling water of industrial plants, requires simple and fast methods suitable for multiplexed detection such as flow cytometry (FCM) with optically encoded carrier beads. For this purpose, we combine fluorescent Cd-free Ag−In−S ternary quantum dots (t-QDs) with fluorescence Lifetimes (LTs) of several hundred nanoseconds and superparamagnetic Fe3O4 nanoparticles (SPIONs) with mesoporous CaCO3 microbeads to a magneto-fluorescent bead platform that can be surface-functionalized with bioligands, such as antibodies. This inorganic bead platform enables immuno-magnetic separation, target enrichment, and target quantification with optical readout. The beads can be detected with steady-state and time-resolved fluorescence microscopy and flow cytometry (FCM). Moreover, they are suited for readout by time gated emission. In the following, the preparation of these magneto-fluorescent CaCO3 beads, their spectroscopic and analytic characterization, and their conjugation with bacteria-specific antibodies are presented as well as proof-of-concept measurements with Legionella pneumophila including cell cultivation and plating experiments for bacteria quantification. Additionally, the possibility to discriminate between the long-lived emission of the LT-encoded capture and carrier CaCO3 beads and the short-lived Emission of the dye-stained bacteria with time-resolved fluorescence techniques and single wavelength excitation is demonstrated. KW - Fluorescence KW - method KW - lifetime KW - quantum yield KW - particle KW - magnetic nanoparticle KW - immunoseparation KW - flow cytometry KW - fluorescence microscopy KW - nanoparticle KW - quantum dot KW - AIS QD KW - fluorescence KW - bacteria detection KW - bacteria KW - antibody KW - Legionella KW - screening tes KW - FLIM PY - 2019 DO - https://doi.org/10.1021/acs.analchem.9b01812 SN - 0003-2700 SN - 1520-6882 VL - 91 SP - 12661 EP - 12669 PB - American Chemical Society CY - Washington, DC AN - OPUS4-50117 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gharaati, S. A1 - Wang, Cui A1 - Förster, C. A1 - Weigert, Florian A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Triplet–Triplet Annihilation Upconversion in a MOF with AcceptorFilled Channels N2 - In summary, we report a highly modular solid TTA-UC system comprising of a crystalline, thermally stable PCN222(Pd) MOF with CA-coated MOF channels and with a DPA annihilator embedded in a solution-like environment in the MOF channels. This solid material displays blue upconverted delayed emission with a luminescence lifetime of 373 us, a threshold value of 329 mW*cm-2 and a triplet–triplet energy transfer efficiency of 82%. This optical application adds another facet to the versatile chemistry of PCN-222 MOFs. The design concept is also applicable to other TTA-UC pairs and enables tuning of the UCL color, for example, by replacing DPA with other dyes as exemplarily shown for 2,5,8,11-tetra-tert-butyl-perylene, that yields UCL at 450 nm. Current work aims to reduce the oxygen sensitivity and to increase the retention of the trapped annihilators in organic environments, for example, by tuning the chain length of the carboxylic acid and by coating the MOF surface. In addition, the TTA-UC efficiency will be further enhanced by reducing the reabsorption of the UC emission caused by Pd(TCPP) and by optimizing the sensitizer/annihilator interface. KW - Porphyrin KW - Method KW - MOF KW - Fluorescence KW - Dye KW - Sensor KW - Oxygen sensitive KW - Single molecule KW - DPA KW - Lifetime KW - Upconverstion KW - Quantum yield KW - Triplet-triplet annihilation KW - Sensitization KW - Energy transfer KW - NMR PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-500580 DO - https://doi.org/10.1002/chem.201904945 VL - 26 IS - 5 SP - 1003 EP - 1007 PB - Wiley-VCH Verlag CY - Weinheim AN - OPUS4-50058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tietze, R. A1 - Panzer, R. A1 - Starzynski, T. A1 - Guhrenz, C. A1 - Frenzel, Florian A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Weigand, Jan J. A1 - Eychmüller, A. T1 - Synthesis of NIR-emitting InAs-based core/shell quantum dots with the use of tripyrazolylarsane as arsenic precursor N2 - Tris(3,5-dimethylpyrazolyl)arsane (1) is introduced as a low-cost and convenient to handle arsenic precursor for the straight Forward synthesis of InAs Quantum dots (QDs). Transamination of 1 with the solvent oleylamine (OLAH) gives trioleylarsane (As(OLA)3) which in the presence of the reducing agents diisobutylaluminum hydride (DIBAL-H) or trioleylphosphane (P(OLA)3) yields InAs QDs via a typical hot injection approach. The size of the obtained InAs core QDs are tuned by varying the reaction time, the amount of the applied reducing agent, or even more effectively by changing the Indium and/or zinc halide precursors, InX3, and ZnX2 (Cl, Br, or I). Passivation of the resulting InAs particles with a protective ZnS or ZnSe shell results in improved photoluminescence of the core/shell QDs covering a spectral range between 600 and 1150 nm. KW - Quantum dot KW - NIR KW - Near infrared PY - 2018 DO - https://doi.org/10.1002/ppsc.201800175 SN - 0934-0866 SN - 1521-4117 VL - 35 IS - 9 SP - 1800175, 1 EP - 7 PB - Wiley AN - OPUS4-46076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drexler, A.-K. A1 - Konert, Florian A1 - Nietzke, Jonathan A1 - Hodžić, E. A1 - Pastore, S. A1 - Domitner, J. A1 - Rhode, Michael A1 - Sommitsch, C. A1 - Böllinghaus, Thomas T1 - Effect of Tensile Loading and Temperature on the Hydrogen Solubility of Steels at High Gas Pressure N2 - The hydrogen solubility in ferritic and martensitic steels is affected by hydrostatic stress, pressure, and temperature. In general, compressive stresses decrease but tensile stresses increase the hydrogen solubility. This important aspect must be considered when qualifying materials for high‐pressure hydrogen applications (e.g., for pipelines or tanks) by using autoclave systems. In this work, a pressure equivalent for compensating the effect of compressive stresses on the hydrogen solubility inside of closed autoclaves is proposed to achieve solubilities that are equivalent to those in pipelines and tanks subjected to tensile stresses. Moreover, it is shown that the temperature effect becomes critical at low temperatures (e.g., under cryogenic conditions for storing liquid hydrogen). Trapping of hydrogen in the microstructure can increase the hydrogen solubility with decreasing temperature, having a solubility minimum at about room temperature. To demonstrate this effect, the generalized law of the hydrogen solubility is parameterized for different steels using measured contents of gaseous hydrogen. The constant parameter sets are verified and critically discussed with respect to the high‐pressure hydrogen experiments. KW - Hydrogen KW - Solubility KW - Temperature KW - Tensile loading KW - Analytical calculation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586701 DO - https://doi.org/10.1002/srin.202300493 SN - 1611-3683 SP - 1 EP - 9 PB - Wiley AN - OPUS4-58670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Mezera, Marek A1 - Florian, C. A1 - Römer, G.-W. A1 - Krüger, Jörg A1 - Bonse, Jörn ED - Stoian, R. ED - Bonse, Jörn T1 - Creation of Material Functions by Nanostructuring N2 - Surface nanostructures provide the possibility to create and tailor surface functionalities mainly via controlling their topography along with other chemical and physical material properties. One of the most appealing technologies for surface functionalization via micro- and nanostructuring is based on laser processing. This can be done either via direct contour-shaping of the irradiated material using a tightly focused laser beam or in a self-ordered way that allows employing larger laser beam diameters along with areal scanning to create a variety of laser-induced periodic surface structures (LIPSS). For the latter approach, particularly ultrashort pulsed lasers have recently pushed the borders across long-lasting limitations regarding the minimum achievable feature sizes and additionally boosted up the production times. This chapter reviews the plethora of recently investigated applications of LIPSS—for example, via imposing diffractive or plasmonic structural colors, the management of liquids and surface wetting properties, biomedical and bioinspired functionalities, beneficial effects in tribology for reducing friction and wear, the manipulation of optical scattering and absorption in photovoltaics, or the modification of magnetic or superconducting surface properties in other energy applications. The footprint of the LIPSS-based technology is explored in detail regarding the current state of industrialization, including an analysis of the market and associated LIPSS production costs. KW - Laser-induced periodic surface structures, LIPSS KW - Surface functionalization KW - Nanostructures KW - Microstructures KW - Laser processing PY - 2023 SN - 978-3-031-14751-7 SN - 978-3-031-14752-4 DO - https://doi.org/10.1007/978-3-031-14752-4_23 VL - 239 SP - 827 EP - 886 PB - Springer Nature Switzerland AG CY - Cham, Switzerland AN - OPUS4-57295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kannengießer, Thomas A1 - Mc Inerney, T. A1 - Florian, Wolfgang A1 - Böllinghaus, Thomas A1 - Cross, C.E. ED - Cerjak, H. T1 - The influence of local weld deformation on hot cracking susceptibility T2 - 6th International Seminar on the Numerical Analysis of Weldability CY - Seggauberg, Austria DA - 2001-10-01 PY - 2002 SN - 1-902653-56-4 N1 - Serientitel: Books of IOM3 – Series title: Books of IOM3 IS - 784 SP - 803 EP - 818 PB - Maney CY - London AN - OPUS4-1793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ibrahimov, H.C. A1 - Friedrich, Jörg Florian A1 - Ismailov, E.H. A1 - Zeynalov, Eldar A1 - Aliyeva, A. Z. A1 - Seidov, M.I. A1 - Rustamov, M.I. T1 - Thermal and magnetic peculiarities of metal-containing carbon nano-phase formed in the reaction of fine-dispersed aluminium with dichlorethane in paraffin medium N2 - Electron magnetic resonance (EMR) spectroscopy, X-ray-fluorescent microscopy (XFM) and thermal analysis (TGA/DTA) are used to characterize the carbon nano-phase obtained in the reaction between fine-dispersed aluminium and dichlorethane in the liquid paraffin medium and its modified with Mn(II), Fe(III), Ni(II), Cu(II) chlorides forms were studied. It was shown that the solid nano-structured functionalized carbon systems containing metals possess specific magnetic and thermal properties. Key parameters of the process, influencing on the size and structure of the formed carbon nano-phase were determined. Results and regularities established in this work create presumably the certain basis for optimization of physical and chemical properties of similar systems. KW - Aluminium KW - Dichlorethane KW - Carbon nanostructure KW - Magnetic KW - Thermal properties PY - 2012 SN - 2161-6213 VL - 2 IS - 2 SP - 196 EP - 202 PB - David publishing CY - Libertyville, Illinois, USA AN - OPUS4-25639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drexler, A A1 - Konert, Florian A1 - Sobol, Oded A1 - Rhode, Michael A1 - Domitner, J A1 - Sommitsch, C A1 - Boellinghaus, Thomas T1 - Enhanced gaseous hydrogen solubility in ferritic and martensitic steels at low temperatures N2 - Metals that are exposed to high pressure hydrogen gas may undergo detrimental failure by embrittlement. Understanding the mechanisms and driving forces of hydrogen absorption on the surface of metals is crucial for avoiding hydrogen embrittlement. In this study, the effect of stress-enhanced gaseous hydrogen uptake in bulk metals is investigated in detail. For that purpose, a generalized form of Sievert's law is derived from thermodynamic potentials considering the effect of microstructural trapping sites and multiaxial stresses. This new equation is parametrized and verified using experimental data for carbon steels, which were charged under gaseous hydrogen atmosphere at pressures up to 1000 bar. The role of microstructural trapping sites on the parameter identification is critically discussed. KW - Hydrogen KW - Thermodynamic modelling KW - Pressure-dependent solubility KW - Steel KW - Trapping PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559307 DO - https://doi.org/10.1016/j.ijhydene.2022.09.109 SN - 0360-3199 VL - 47 IS - 93 SP - 39639 EP - 39653 PB - Elsevier Ltd. AN - OPUS4-55930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lukowiak, M.C. A1 - Wettmarshausen, Sascha A1 - Hidde, Gundula A1 - Landsberger, Petra A1 - Boenke, Viola A1 - Rodenacker, K. A1 - Braun, Ulrike A1 - Friedrich, Jörg Florian A1 - Gorbushina, Anna A1 - Haag, R. T1 - Polyglycerol coated polypropylene surfaces for protein and bacteria resistance N2 - Polyglycerol (PG) coated polypropylene (PP) films were synthesized in a two-step approach that involved plasma bromination and subsequently grafting hyperbranched polyglycerols with very few amino functionalities. The influence of different molecular weights and density of reactive linkers were investigated for the grafted PGs. Longer bromination times and higher amounts of linkers on the surface afforded long-term stability. The protein adsorption and bacteria attachment of the PP-PG films were studied. Their extremely low amine content proved to be beneficial for preventing bacteria attachment. PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-325406 DO - https://doi.org/10.1039/c4py01375a SN - 1759-9954 SN - 1759-9962 VL - 6 IS - 8 SP - 1350 EP - 1359 AN - OPUS4-32540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -