TY - JOUR A1 - Sadowski, A. A1 - Seidel, M. A1 - Al-Lawati, H. A1 - Azizi, E. A1 - Balscheit, Hagen A1 - Böhm, M. A1 - Chen, Lei A1 - van Dijk, I. A1 - Doerich-Stavridis, C. A1 - Kunle Fajuyitan, O. A1 - Filippidis, A. A1 - Winther Fischer, A. A1 - Fischer, C. A1 - Gerasimidis, S. A1 - Karampour, H. A1 - Kathirkamanathan, L. A1 - Subramanian, S. A1 - Topkaya, Cem A1 - Wagner, H. N. R. A1 - Wang, J. A1 - Wang, J. A1 - Kumar Yadav, K. A1 - Yun, X. A1 - Zhang, P. T1 - 8-MW wind turbine tower computational shell buckling benchmark - Part 1: An international ‘round-robin’ exercise JF - Engineering failure analysis N2 - An assessment of the elastic-plastic buckling limit state for multi-strake wind turbine support towers poses a particular challenge for the modern finite element analyst, who must competently navigate numerous modelling choices related to the tug-of-war between meshing and computational cost, the use of solvers that are robust to highly nonlinear behaviour, the potential for multiple near-simultaneously critical failure locations, the complex issue of imperfection sensitivity and finally the interpretation of the data into a safe and economic design. This paper reports on an international ‘round-robin’ exercise conducted in 2022 aiming to take stock of the computational shell buckling expertise around the world which attracted 29 submissions. Participants were asked to perform analyses of increasing complexity on a standardised benchmark of an 8-MW multi-strake steel wind turbine support tower segment, from a linear elastic stress analysis to a linear bifurcation analysis to a geometrically and materially nonlinear buckling analysis with imperfections. The results are a showcase of the significant shell buckling expertise now available in both industry and academia. This paper is the first of a pair. The second paper presents a detailed reference solution to the benchmark, including an illustration of the Eurocode-compliant calibration of two important imperfection forms. KW - Wind turbine tower KW - Computational KW - Shell buckling KW - Benchmark PY - 2023 DO - https://doi.org/10.1016/j.engfailanal.2023.107124 SN - 1350-6307 VL - 148 SP - 1 EP - 23 PB - Elsevier Science CY - Oxford AN - OPUS4-57019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abou-Ras, D. A1 - Caballero, R. A1 - Fischer, C.-H. A1 - Kaufmann, C.A. A1 - Lauermann, I. A1 - Mainz, R. A1 - Mönig, H. A1 - Schöpke, A. A1 - Stephan, C. A1 - Streeck, C. A1 - Schorr, S. A1 - Eicke, A. A1 - Döbeli, M. A1 - Gade, B. A1 - Hinrichs, J. A1 - Nunney, T. A1 - Dijkstra, H. A1 - Hoffmann, V. A1 - Klemm, D. A1 - Efimova, V. A1 - Bergmaier, A. A1 - Dollinger, G. A1 - Wirth, Thomas A1 - Unger, Wolfgang A1 - Rockett, A.A. A1 - Perez-Rodriguez, A. A1 - Alvarez-Garcia, J. A1 - Izquierdo-Roca, V. A1 - Schmid, T. A1 - Choi, P.-P. A1 - Müller, M. A1 - Bertram, F. A1 - Christen, J. A1 - Khatri, H. A1 - Collins, R.W. A1 - Marsillac, S. A1 - Kötschau, I. T1 - Comprehensive comparison of various techniques for the analysis of elemental distributions in thin films JF - Microscopy and Microanalysis N2 - The present work shows results on elemental distribution analyses in Cu(In,Ga)Se2 thin films for solar cells performed by use of wavelength-dispersive and energy-dispersive X-ray spectrometry (EDX) in a scanning electron microscope, EDX in a transmission electron microscope, X-ray photoelectron, angle-dependent soft X-ray emission, secondary ion-mass (SIMS), time-of-flight SIMS, sputtered neutral mass, glow-discharge optical emission and glow-discharge mass, Auger electron, and Rutherford backscattering spectrometry, by use of scanning Auger electron microscopy, Raman depth profiling, and Raman mapping, as well as by use of elastic recoil detection analysis, grazing-incidence X-ray and electron backscatter diffraction, and grazing-incidence X-ray fluorescence analysis. The Cu(In,Ga)Se2 thin films used for the present comparison were produced during the same identical deposition run and exhibit thicknesses of about 2 µm. The analysis techniques were compared with respect to their spatial and depth resolutions, measuring speeds, availabilities, and detection limits. KW - Elemental distributions KW - Comparison KW - Depth profiling KW - Chemical mapping KW - Thin films KW - Solar cells KW - Chalcopyrite-type KW - Cu(In,Ga)Se2 PY - 2011 DO - https://doi.org/10.1017/S1431927611000523 SN - 1431-9276 SN - 1435-8115 VL - 17 IS - 5 SP - 728 EP - 751 PB - Cambridge University Press CY - New York, NY AN - OPUS4-24506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rütters, H. A1 - Fischer, S. A1 - Le, Quynh Hoa A1 - Bettge, Dirk A1 - Bäßler, Ralph A1 - Maßmann, J. A1 - Ostertag-Henning, C. A1 - Wolf, J. L. A1 - Pumpa, M. A1 - Lubenau, U. A1 - Knauer, S. A1 - Jaeger, P. A1 - Neumann, A. A1 - Svensson, K. A1 - Pöllmann, H. A1 - Lempp, C. A1 - Menezes, F. F. A1 - Hagemann, B. T1 - Towards defining reasonable minimum composition thresholds – Impacts of variable CO2 stream compositions on transport, injection and storage JF - International journal of greenhouse gas control N2 - To set up recommendations on how to define “reasonable minimum composition thresholds” for CO2 streams to access CO2 pipeline networks, we investigated potential impacts of CO2 streams with different and temporally variable compositions and mass flow rates along the CCS chain. All investigations were based on a generic “CCS cluster scenario” in which CO2 streams captured from a spatial cluster of eleven emitters (seven fossil-fired power plants, two cement plants, one refinery and one steel mill) are collected in a regional pipeline network. The resulting CO2 stream (19.78 Mio t impure CO2 per year) is transported in a trunk line (onshore and offshore) and injected into five generic replicate storage structures (Buntsandstein saline aquifers) offshore. Experimental investigations and modeling of selected impacts revealed beneficial as well as adverse impacts of different impurities and their combinations. Overall, no fundamental technical obstacles for transporting, injecting and storing CO2 streams of the considered variable compositions and mass flow rates were observed. We recommend to define minimum composition thresholds for each specific CCS project through limiting i) the overall CO2 content, ii) maximum contents of relevant impurities or elements, iii) acceptable variability of concentrations of critical impurities, and defining impurity combinations to be avoided. KW - Impurities KW - CO2 quality KW - Pipeline network KW - Whole-chain CCS scenario KW - Recommendations PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543004 DO - https://doi.org/10.1016/j.ijggc.2022.103589 SN - 1750-5836 VL - 114 SP - 1 EP - 14 PB - Elsevier CY - New York, NY AN - OPUS4-54300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ast, S. A1 - Fischer, Tobias A1 - Müller, H. A1 - Mickler, W. A1 - Schwichtenberg, M. A1 - Rurack, Knut A1 - Holdt, H.-J. T1 - Integration of the 1,2,3-triazole 'click' motif as a potent signalling element in metal ion responsive fluorescent probes JF - Chemistry - A European journal N2 - In a systematic approach we synthesized a new series of fluorescent probes incorporating donor–acceptor (D-A) substituted 1,2,3-triazoles as conjugative π-linkers between the alkali metal ion receptor N-phenylaza-[18]crown-6 and different fluorophoric groups with different electron-acceptor properties (4-naphthalimide, meso-phenyl-BODIPY and 9-anthracene) and investigated their performance in organic and aqueous environments (physiological conditions). In the charge-transfer (CT) type probes 1, 2 and 7, the fluorescence is almost completely quenched by intramolecular CT (ICT) processes involving charge-separated states. In the presence of Na+ and K+ ICT is interrupted, which resulted in a lighting-up of the fluorescence in acetonitrile. Among the investigated fluoroionophores, compound 7, which contains a 9-anthracenyl moiety as the electron-accepting fluorophore, is the only probe which retains light-up features in water and works as a highly K+/Na+-selective probe under simulated physiological conditions. Virtually decoupled BODIPY-based 6 and photoinduced electron transfer (PET) type probes 3–5, where the 10-substituted anthracen-9-yl fluorophores are connected to the 1,2,3-triazole through a methylene spacer, show strong ion-induced fluorescence enhancement in acetonitrile, but not under physiological conditions. Electrochemical studies and theoretical calculations were used to assess and support the underlying mechanisms for the new ICT and PET 1,2,3-triazole fluoroionophores. KW - Charge transfer KW - Click chemistry KW - Electron transfer KW - Fluorescent probes KW - Metal ions PY - 2013 DO - https://doi.org/10.1002/chem.201201575 SN - 0947-6539 SN - 1521-3765 VL - 19 IS - 9 SP - 2990 EP - 3005 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-27742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pyzalla, A. A1 - Pinto, H. A1 - Wild, E. A1 - Poeste, T. A1 - Bohne, C. A1 - Reimers, W. A1 - Aßmus, Kristin A1 - Hübner, Wolfgang A1 - Fischer, A. ED - Bartz, Wilfried J. T1 - Mechanical Stress in Tribo-Layers T2 - Tribology and lubrication engineering - 14th International Colloquium Tribology T2 - 14th International Colloquium Tribology "Tribology and Lubrication Engineering" CY - Stuttgart, Deutschland DA - 2004-01-13 PY - 2004 SN - 3-924813-54-X VL - I SP - 85 EP - 89 PB - Techn. Akad. Esslingen CY - Ostfildern AN - OPUS4-3144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pinto, H. A1 - Pyzalla, A.R. A1 - Büscher, R. A1 - Fischer, A. A1 - Aßmus, Kristin A1 - Hübner, Wolfgang T1 - The effect of hydrogen on the deterioration of austenitic steels during wear at cryogenic temperature JF - Wear N2 - Hydrogen represents an important alternative to fossil fuels. Hydrogen storage is possible as a gas, at room temperature (RT) at about 20 MPa pressure, and in a liquefied form, at cryogenic temperatures of about 20 K. The latter form is particularly attractive due to the possibility of stocking a large quantity of hydrogen within a small volume. In moving parts (e.g. of transport vehicles) cryogenic temperature and the presence of hydrogen strongly enhance wear processes and subsequently component failure. The present work deals with the deformation behaviour and the microstructural deterioration of austenitic CrNi- and CrMn high nitrogen-steels during friction in liquid hydrogen at 20 K. The modified microstructure within the wear scar is studied by scanning electron microscopy and X-ray diffraction methods. Diffraction studies of wear scars reveal the importance of twinning during deformation at 20 K. This increase of twinning can be attributed to a hydrogen-induced reduction of stacking fault energy (SFE) in the austenitic steels. Interactions between twin boundaries and planar dislocation structures along with locally increased stresses led to the formation of extensive crack networks. The amount of hydrogen-induced surface cracks depends on the alloy composition and is not necessarily correlated to the wear resistance of the austenitic steels. KW - Austenitic steel KW - Stacking fault energy KW - Hydrogen KW - Wear KW - Cryotechnology PY - 2005 DO - https://doi.org/10.1016/j.wear.2005.02.057 SN - 0043-1648 VL - 259 IS - 1-6 SP - 424 EP - 431 PB - Elsevier CY - Amsterdam AN - OPUS4-7692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Allsop, N. A. A1 - Schönmann, A. A1 - Belaidi, A. A1 - Muffler, H.-J. A1 - Mertesacker, B. A1 - Bohne, W. A1 - Strub, Erik A1 - Röhrich, J. A1 - Lux-Steiner, M. C. A1 - Fischer, C.-H. T1 - Indium sulfide thin films deposited by the spray ion layer gas reaction technique JF - Thin solid films N2 - The Spray Ion Layer Gas Reaction (Spray-ILGAR) technique is a new variation on the ILGAR technique used to prepare chalcogenide thin films. High quality indium sulfide thin films were produced by Spray-ILGAR with an indirect bandgap of 2.2 eV and a high suitability for use as buffer layers in chalcopyrite solar cells. The process involves the cyclical spray deposition of an indium containing precursor layer followed by its conversion to sulfide using hydrogen sulfide gas. Analysis of the deposition reveals that the indium chloride based precursor is transported via the vapour phase from the spray droplets to the substrate surface. KW - Spray deposition KW - Indium sulfide KW - Ion layer gas reaction KW - ILGAR KW - X-ray diffraction KW - X-ray fluorescence KW - Deposition process PY - 2006 DO - https://doi.org/10.1016/j.tsf.2006.01.019 SN - 0040-6090 VL - 513 IS - 1-2 SP - 52 EP - 56 PB - Elsevier CY - Amsterdam AN - OPUS4-14267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fischer, C. A1 - Wu, J. A1 - Meyer, U. A1 - Kong, B. A1 - Schmidt, Martin A1 - Wuttke, M. A1 - Drebenstedt, C. A1 - Barth, Uli A1 - Rüter, H. T1 - Eight years of successful bilateral cooperation: Milestones of sino-german research T2 - Latest developments in coal fire research - Bridging the science, economics, and politics of a global disaster / ICCFR2 T2 - 2nd International conference on coal fire research (ICCFR2) CY - Berlin, Germany DA - 2010-05-19 KW - Underground coal fires KW - Sino-german cooperation PY - 2010 SN - 978-3-86012-397-3 IS - Introduction SP - 3 EP - 18 AN - OPUS4-21460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gers-Panther, C.F. A1 - Fischer, H. A1 - Nordmann, J. A1 - Seiler, T. A1 - Behnke, Thomas A1 - Würth, Christian A1 - Frank, W. A1 - Resch-Genger, Ute A1 - Müller, T.J.J. T1 - Four- and Five-Component Syntheses and Photophysical Properties of Emission Solvatochromic 3‑Aminovinylquinoxalines JF - Journal of organic chemistry N2 - 3-Aminovinylquinoxalines are readily accessible from (hetero)aryl glyoxylic acids or heterocyclic π-nucleophiles by consecutive four- and fivecomponent syntheses in the sense of an activation-alkynylation-cyclocondensation-addition sequence or glyoxylation-alkynylation-cyclocondensation-addition sequence in good yields. The title compounds are highly fluorescent with pronounced emission solvatochromicity and protochromic fluorescence quenching. Time-resolved fluorescence spectroscopy furnishes radiative and nonradiative fluorescence decay rates in various solvent polarities. The electronic structure is corroborated by DFT and TD-DFT calculations rationalizing the observed spectroscopic effects. KW - Dye KW - Syntheseis KW - Spectroscopy PY - 2016 DO - https://doi.org/10.1021/acs.joc.6b02581 SN - 0022-3263 VL - 82 SP - 567 EP - 578 PB - ACS Publications AN - OPUS4-39211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michler, T. A1 - Freitas, Tomas A1 - Oesterlin, H. A1 - Fischer, C. A1 - Wackermann, K. A1 - Ebling, F. T1 - Tensile testing in high pressure gaseous hydrogen using conventional and tubular specimens: Austenitic stainless steels JF - International Journal of Hydrogen Energy N2 - Eight commercial austenitic stainless steels were tensile tested in reference atmosphere, in gaseous high-pressure hydrogen and in gaseous hydrogen precharged condition using conventional (CS) and tubular specimens (TS). For all configurations, 0.2 yield strength and ultimate tensile strength were comparable. In reference atmosphere, reduction of area of CS was higher compared to TS, whereas in gaseous high pressure hydrogen reduction of area of CS was lower compared to TS. In gaseous hydrogen precharged condition reduction of area of CS and TS were comparable for the severely affected grades. The differences in necking behavior between CS and TS are explained by different competitions between necking and hydrogen assisted crack initiation and growth especially for the tests in high pressure hydrogen gas. KW - Hydrogen KW - Hydrogen Embrittlement KW - Tensile Test KW - Conventional and Tubular Specimen KW - Austenitic Stainless Steel KW - High Pressure Gaseous Hydrogen PY - 2023 DO - https://doi.org/10.1016/j.ijhydene.2023.03.248 SN - 0360-3199 VL - 48 IS - 65 SP - 25609 EP - 25618 PB - Elsevier BV AN - OPUS4-58185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -