TY - GEN A1 - Boehm, U. A1 - Nelson, G. A1 - Brown, C. M. A1 - Bagley, S. A1 - Bajcsy, P. A1 - Bischof, J. A1 - Dauphin, A. A1 - Dobbie, I. M. A1 - Eriksson, J. E. A1 - Faklaris, O. A1 - Fernandez-Rodriguez, J. A1 - Ferrand, A. A1 - Gelman, L. A1 - Gheisari, A. A1 - Hartmann, H. A1 - Kukat, C. A1 - Laude, A. A1 - Mitkovski, M. A1 - Munck, S. A1 - North, A. J. A1 - Rasse, T. M. A1 - Resch-Genger, Ute A1 - Schuetz, L. C. A1 - Seitz, A. A1 - Strambio-De-Castillia, C. A1 - Swedlow, J. R. A1 - Nitschke, R. T1 - Author correction: QUAREP-LiMi: a community endeavor to advance quality assessment and reproducibility in light microscopy N2 - This is a corrigendum to the original article "QUAREP-LiMi: a community endeavor to advance quality assessment and reproducibility in light microscopy" that was published in the journal "Nature methods", vol. 18 (2021), pp. 1424-1427. PY - 2022 DO - https://doi.org/10.1038/s41592-021-01387-x SN - 1548-7105 SP - 1 PB - Nature Publishing Group CY - London AN - OPUS4-54270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Boehm, U. A1 - Nelson, G. A1 - Brown, C. M. A1 - Bagley, S. A1 - Bajcsy, P. A1 - Bischof, J. A1 - Dauphin, A. A1 - Dobbie, I. M. A1 - Eriksson, J. E. A1 - Faklaris, O. A1 - Fernandez-Rodriguez, J. A1 - Ferrand, A. A1 - Gelman, L. A1 - Gheisari, A. A1 - Hartmann, H. A1 - Kukat, C. A1 - Laude, A. A1 - Mitkovski, M. A1 - Munck, S. A1 - North, A. J. A1 - Rasse, T. M. A1 - Resch-Genger, Ute A1 - Schuetz, L. C. A1 - Seitz, A. A1 - Strambio-De-Castillia, C. A1 - Swedlow, J. R. A1 - Nitschke, R. T1 - QUAREP-LiMi: A community endeavor to advance quality assessment and reproducibility in light microscopy N2 - The community-driven initiative Quality Assessment and Reproducibility for Instruments & Images in Light Microscopy (QUAREP-LiMi) wants to improve reproducibility for light microscopy image data through Quality control (QC) management of instruments and images. It aims for a common set of QC guidelines for Hardware calibration and image acquisition, management and analysis. KW - Fluorescence KW - Microscopy KW - Quality assurance KW - Comparability KW - Imaging KW - Standards KW - Reference materials KW - Reliability KW - Data KW - Reference data KW - Biology KW - Medicine KW - Life science PY - 2021 DO - https://doi.org/10.1038/s41592-021-01162-y SN - 1548-7105 VL - 18 SP - 1424 EP - 1427 PB - Nature Publishing Group CY - London AN - OPUS4-52722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Philipp, Rosemarie A1 - Lalere, B. A1 - Gantois, F. A1 - Sánchez, C. A1 - Sáez, A. A1 - Bebić, J. A1 - Banjanac, K. A1 - Alexopoulos, Ch. A1 - Kakoulides, E. A1 - Claramunt, A. V. A1 - Janko, P. A1 - Jotanovic, A. A1 - Hafner-Vuk, K. A1 - Buzoianu, M. A1 - Mihail, R. A1 - Fernández, M. M. A1 - Etcheverry, J. A1 - Mbithi Muendo, B. A1 - Muriira Karau, G. A1 - Silva, A. A1 - Almirón, F. A1 - Marajh, D. A1 - Makgatho, P. A1 - Visser, R. A1 - Alaskar, A. R. A1 - Alosaimi, A. A1 - Alrashed, M. A1 - Yılmaz, H. A1 - Ün, İ. A1 - Gündüz, S. A1 - Topal, K. A1 - Bilsel, M. A1 - Karasinski, J. A1 - Torres, J. T1 - Supplementary comparison study - measurement capabilities for the quantification of ethanol in water N2 - The accurate quantification of ethanol in water is essential for forensic applications such as blood and breath alcohol testing and for commercial applications such as the assessment of alcoholic beverages. The intercomparison EURAMET.QM-S14 is part of a capacity building project named ALCOREF “Certified forensic alcohol reference materials” that is running within the European Metrology Programme for Innovation and Research (EMPIR). The intercomparison should allow project partners and other interested National Metrology Institutes (NMIs) and Designated Institutes (DIs) to benchmark their analytical methods for the quantification of ethanol in water. The study plan was agreed by the European Association of National Metrology Institutes (EURAMET) Subcommittee Bio- and Organic Analysis (SCBOA) and the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) in February and April 2019, respectively. The intercomparison was coordinated by BAM. Two concentration levels relevant for the calibration and verification of evidential breath alcohol analysers were distributed to study participants. Fifteen institutes from 15 countries registered for the intercomparison and returned results. Participants mostly applied gas chromatography with flame ionisation detection (GC-FID) or mass spectroscopy (GC-MS), one participant used titrimetry and one participant employed a test bench for breath analyser calibration (“bubble train”). Participants did either in-house purity assessment of their commercial ethanol calibrants by Karl-Fischer titration, chromatographic methods, quantitative nuclear magnetic resonance spectroscopy (qNMR) and/or density measurements; or they used ethanol/water Certified Reference Materials (CRMs) from NMIs/DIs for calibration. CCQM OAWG agreed to use a consensus value from participants results that utilizes the reported uncertainties as Key Comparison Reference Value (KCRV). The Gaussian Random effects model with Hierarchical Bayesian solution (HB-REM) is a reasonable approach in this case. The KCRVs and Degrees of Equivalence (DoEs) were calculated with the NIST consensus builder version 1.2 Hierarchical Bayes procedure. Successful participation in the interlaboratory comparison has demonstrated the capabilities in determining the mass fraction of ethanol in aqueous matrices in the range 0.1 mg/g to 8 mg/g. Fourteen out of 15 participants have successfully quantified both samples, one participant successfully quantified only the lower-level (0.6 mg/g) sample. KW - Certified reference material KW - EURAMET KW - EMPIR KW - ALCOREF KW - Ethanol in water KW - Supplementary comparison PY - 2022 DO - https://doi.org/10.1088/0026-1394/59/1A/08015 VL - 59 IS - 1A SP - 08015 PB - IOP Publishing AN - OPUS4-55889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hendriks, L. A1 - Brunjes, R. A1 - Taskula, S. A1 - Kocic, J. A1 - Hattendorf, B. A1 - Bland, G. A1 - Lowry, G. A1 - Bolea-Fernandez, E. A1 - Vanhaecke, F. A1 - Wang, J. A1 - Baalousha, M. A1 - von der Au, Marcus A1 - Meermann, Björn A1 - Holbrook, T. A1 - Wagner, S. A1 - Harycki, S. A1 - Gundlach-Graham, A. A1 - von der Kammer, F. T1 - Results of an interlaboratory comparison for characterization of Pt nanoparticles using single-particle ICP-TOFMS N2 - This study describes an interlaboratory comparison (ILC) among nine (9) laboratories to evaluate and validate the standard operation procedure (SOP) for single-particle (sp) ICP-TOFMS developed within the context of the Horizon 2020 project ACEnano. The ILC was based on the characterization of two different Pt nanoparticle (NP) suspensions in terms of particle mass, particle number concentration, and isotopic composition. The two Pt NP suspensions were measured using icpTOF instruments (TOFWERK AG, Switzerland). Two Pt NP samples were characterized and mass equivalent spherical sizes (MESSs) of 40.4 ± 7 nm and 58.8 ± 8 nm were obtained, respectively. MESSs showed <16% relative standard deviation (RSD) among all participating labs and <4% RSD after exclusion of the two outliers. A good agreement was achieved between the different participating laboratories regarding particle mass, but the particle number concentration results were more scattered, with <53% RSD among all laboratories, which is consistent with results from previous ILC studies conducted using ICP-MS instrumentation equipped with a sequential mass spectrometer. Additionally, the capabilities of sp-ICP-TOFMS to determine masses on a particle basis are discussed with respect to the potential for particle density determination. Finally, because quasi-simultaneous multi-isotope and multielement determinations are a strength of ICP-TOFMS instrumentation, the precision and trueness of isotope ratio determinations were assessed. The average of 1000 measured particles yielded a precision of below ±1% for intensity ratios of the most abundant Pt isotopes, i.e. 194Pt and 195Pt, while the accuracy of isotope ratios with the lower abundant isotopes was limited by counting statistics. KW - ILC KW - spICP-MS KW - PtNP KW - Nanopartikel PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580353 DO - https://doi.org/10.1039/d3nr00435j SN - 2040-3364 VL - 15 IS - 26 SP - 11268 EP - 11279 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chronakis, Michail Ioannis A1 - Mavrakis, E. A1 - Alvarez-Fernandez García, R. A1 - Montes-Bayon, M. A1 - Bettmer, J. A1 - Pitta, P. A1 - Tsapakis, M. A1 - Kalantzi, I. A1 - Tsiola, A. A1 - Pergantis, S. An. T1 - Investigating the behavior of ultratrace levels of nanoparticulate and ionic silver in a seawater mesocosm using single particle inductively coupled plasma – mass spectrometry N2 - Silver nanoparticles (AgNPs) nowadays appear in close to 24% of consumer products that contain engineered nanomaterials. Thus, they are expected to be released into the environment, where their fate and effect are still undetermined. Considering the evidenced efficacy of the single particle Inductively Coupled Plasma – Mass Spectrometry (sp ICP-MS) technique in the study of nanomaterials, this work reports on the use of sp ICP-MS along with an online dilution sample introduction system for the direct analysis of untreated and spiked seawater samples, as part of a larger scale experiment studying the fate of Ag (ionic and nanoparticles) in seawater mesocosm systems. Silver nanoparticles coated with branched polyethyleneimine (BPEI@AgNPs) or ionic silver (Ag+) were introduced gradually into the seawater mesocosm tanks at very low, environmentally relevant concentrations (50 ng Ag L− 1 per day, for 10 consecutive days, up to a total of 500 ng Ag L− 1 ), and samples were collected and analyzed daily, within a consistent time window. Using very low detector dwell time (75 μs) and specialized data treatment, information was obtained on the nanoparticles’ size distribution and particle number concentration, as well as the ionic silver content, of both the AgNPs and the Ag+ treated seawater mesocosm tanks. The results for the AgNP treated samples indicated the rapid degradation of the added silver particles, and the subsequent increase of ionic silver, with recoveries close to 100% for the first days of the experiment. On the other hand, particle formation was observed in the Ag+ treated seawater tanks, and even though the number concentration of silver-containing nanoparticles increased throughout the experiment, the amount of silver per particle remained relatively constant from the early days of the experiment. In addition, the online dilution sample introduction system for the ICP-MS proved capable of handling the untreated seawater matrix without significant contamination issues and downtime, while the low dwell time and data treatment procedure developed were shown to be suitable for the analysis of nanomaterials at the low nm-scale, despite the complex and heavy matrix introduced into the ICP-MS. KW - Mesocosm KW - Single-particle KW - Seawater PY - 2023 DO - https://doi.org/10.1016/j.chemosphere.2023.139109 VL - 336 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-57814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - García-Fernández, J. A1 - Bettmer, J. A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Añón, E. A1 - Montes-Bayón, M. A1 - Sanz-Medel, A. T1 - The fate of iron nanoparticles used for treatment of iron deficiency in blood using mass-spectrometry based strategies N2 - The release of iron from iron nanoparticles (NPs) used as parenteral formulations appears to be influenced by the size and surface properties of the colloidal iron complex and the matrix. A clinically applied product Venofer® has been used as a model formulation to establish adequate analytical strategies to evaluate the fate of iron nanoparticles (NPs) in blood. First, the preparation was characterized by high resolution transmission electron microscopy (HRTEM), dynamic light scattering (DLS) and UV-vis absorption spectroscopy. This revealed the presence of monodisperse iron NPs with a hydrodynamic diameter of ∼15 nm and an iron core of ∼4 nm. Venofer® was then incubated with serum and whole blood in a quantitative study on the iron bioavailability from these NPs. Iron was speciated and quantified by using inductively coupled plasma mass spectrometry (ICP-MS). Iron solubilization levels of up to 42% were found in both fluids using isotope dilution of iron for quantification within the first hour of incubation even in the absence of the reticuloendothelial system. The monitoring of the iron-containing proteins present in serum was conducted by highperformance liquid chromatography with ICP-MS detection. It indicated that the dissolved iron ions are bound to transferrin. Quantitative speciation studies using isotope pattern deconvolution experiments concluded that the released iron saturated almost completely (up to 90%) the metal binding sites of transferrin. The remaining iron appeared also associated to albumin and, to a lesser extent, forming smaller sized particles. Thus, the methods presented here provide new insights into the fate of Venofer® nanoparticles and may be applied to other formulations. KW - Iron-sucrose nanoparticles KW - Serum KW - Bioavailability KW - Speciation KW - HPLC KW - ICP-MS PY - 2017 DO - https://doi.org/10.1007/s00604-017-2388-8 SN - 0026-3672 SN - 1436-5073 VL - 184 IS - 10 SP - 3673 EP - 3680 AN - OPUS4-43128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jakubowski, Norbert A1 - Müller, L. A1 - Traub, Heike A1 - Esteban-Fernández, D. A1 - Panne, Ulrich A1 - Herrmann, Antje A1 - Schellenberger, E. A1 - Theuring, F. A1 - Kneipp, Janina T1 - Imaging by laser ablation ICP-MS N2 - ICP-MS is a well-established analytical method which excels by high accuracy, high dynamic range and extremely low limits of detection for most metals. Furthermore ICP-MS offers a very high multi-element coverage so that many elements of the periodic table can be detected simultaneously. In this series of lectures, we want to focus on the historical developments, fundamentals, instrumentation and novel applications of ICP-MS in the life and material sciences. T2 - Ringvorlesung Analytik CY - Humboldt-Universität zu Berlin DA - 23.06.2017 KW - Laser ablation ICP-MS KW - Bio-Imaging PY - 2017 AN - OPUS4-40757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moreno-Gordaliza, E. A1 - Giesen, Charlotte A1 - Lázaro, A. A1 - Esteban-Fernández, D. A1 - Humanes, B. A1 - Canas, B. A1 - Panne, Ulrich A1 - Tejedor, A. A1 - Jakubowski, Norbert A1 - Gómez-Gómez, M.M. T1 - Elemental bioimaging in kidney by LA-ICP-MS as a tool to study nephrotoxicity and renal protective strategies in cisplatin therapies N2 - A laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS)-based methodology is presented for Pt, Cu, and Zn bioimaging on whole kidney 3 µm sagittal sections from rats treated with pharmacological doses of cisplatin, which were sacrificed once renal damage had taken place. Pt turned out to accumulate in the kidney cortex and corticomedullary junction, corresponding to areas where the proximal tubule S3 segments (the most sensitive cells to cisplatin nephrotoxicity) are located. This demonstrates the connection between platinum accumulation and renal damage proved by histological examination of HE-stained sections and evaluation of serum and urine biochemical parameters. Cu and Zn distribution maps revealed a significant displacement in cells by Pt, as compared to control tissues. A dramatic decrease in the Pt accumulation in the cortex was observed when cilastatin was coadministered with cisplatin, which can be related to its nephroprotective effect. Excellent imaging reproducibility, sensitivity (LOD 50 fg), and resolution (down to 8 µm) were achieved, demonstrating that LA–ICP–MS can be applied as a microscopic metal detector at cellular level in certain tissues. A simple and quick approach for the estimation of Pt tissue levels was proposed, based on tissue spiking. PY - 2011 DO - https://doi.org/10.1021/ac201933x SN - 0003-2700 SN - 1520-6882 VL - 83 IS - 20 SP - 7933 EP - 7940 PB - American Chemical Society CY - Washington, DC AN - OPUS4-24965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schreiner, V. C. A1 - Fernandez, D. A1 - Vermeirssen, E. L. M. A1 - Bandow, Nicole A1 - Munoz, K. A1 - Schäfer, R. B. T1 - Corrigendum to “Calibration and field application of passive sampling for episodic exposure to polar organic pesticides in streams” [Environ. Pollut. 194 (2014) 196-202] N2 - The authors regret that the sampling rates were miscalculated as a result of flaws in the R script. Using a R script algorithm (Schreiner et al., 2020) sampling rates changed up to 45% (Table 1). KW - Passive sampling KW - Pesticides PY - 2020 DO - https://doi.org/10.1016/j.envpol.2020.115335 SN - 0269-7491 VL - 265 IS - Part B SP - 115335 EP - 115335 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-51227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fernández, D. A1 - Vermeirssen, E.L.M. A1 - Bandow, Nicole A1 - Munoz, K. A1 - Schäfer, R.B. T1 - Calibration and field application of passive sampling for episodic exposure to polar organic pesticides in streams N2 - Rainfall-triggered runoff is a major driver of pesticide input in streams. Only few studies have examined the suitability of passive sampling to quantify such episodic exposures. In this study, we used Empore-TM styrene-divinylbenzene reverse phase sulfonated disks (SDB disks) and event-driven water samples (EDS) to assess exposure to 15 fungicides and 4 insecticides in 17 streams in a German vineyard area during 4 rainfall events. We also conducted a microcosm experiment to determine the SDB-disk sampling rates and provide a free-software solution to derive sampling rates under time-variable exposure. Sampling rates ranged from 0.26 to 0.77 L d-1 and time-weighted average (TWA) concentrations from 0.05 to 2.11 µg/L. The 2 sampling systems were in good agreement and EDS exceeded TWA concentrations on average by a factor of 3. Our study demonstrates that passive sampling is suitable to quantify episodic exposures from polar organic pesticides. KW - Passive sampling KW - Pesticide KW - Water monitoring KW - Freshwater PY - 2014 DO - https://doi.org/10.1016/j.envpol.2014.08.001 SN - 0269-7491 SN - 0013-9327 SN - 1873-6424 VL - 194 SP - 196 EP - 202 PB - Elsevier Ltd. CY - New York, NY [u.a.] AN - OPUS4-31277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bender, P. A1 - Bogart, L.K. A1 - Posth, O. A1 - Szczerba, Wojciech A1 - Rogers, S.E. A1 - Castro, A. A1 - Nilsson, L. A1 - Zeng, L. J. A1 - Sugunan, A. A1 - Sommertune, J. A1 - Fornara, A. A1 - Gonzales-Alonso, D. A1 - Fernandez Barquin, L. A1 - Johansson, C. T1 - Structural and magnetic properties of multi-core nanoparticles analysed using a generalised numerical inversion method N2 - The structural and magnetic properties of magnetic multi-core particles were determined by numerical inversion of small angle scattering and isothermal magnetisation data. The investigated particles consist of iron oxide nanoparticle cores (9 nm) embedded in poly(styrene) spheres (160 nm). A thorough physical characterisation of the particles included transmission electron microscopy, X-ray diffraction and asymmetrical flow field-flow fractionation. Their structure was ultimately disclosed by an indirect Fourier transform of static light scattering, small angle X-ray scattering and small angle neutron scattering data of the colloidal dispersion. The extracted pair distance distribution functions clearly indicated that the cores were mostly accumulated in the outer surface layers of the poly(styrene) spheres. To investigate the magnetic properties, the isothermal magnetisation curves of the multi-core particles (immobilised and dispersed in water) were analysed. The study stands out by applying the same numerical approach to extract the apparent moment distributions of the particles as for the indirect Fourier transform. It could be shown that the main peak of the apparent moment distributions correlated to the expected intrinsic moment distribution of the cores. Additional peaks were observed which signaled deviations of the isothermal magnetisation behavior from the non-interacting case, indicating weak dipolar interactions. KW - Numerical inversion KW - Magnetic nanoparticles KW - Iron oxides KW - Magnetic properties KW - Structural properties PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-400952 DO - https://doi.org/10.1038/srep45990 SN - 2045-2322 VL - 7 SP - Article 45990, 1 EP - 14 AN - OPUS4-40095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madeja, B. A1 - Gebauer, D. A1 - Marsiske, M. R. A1 - Ott, A. A1 - Rückel, M. A1 - Rosenberg, R. A1 - Baken, A. A1 - Stawski, Tomasz M. A1 - Fernandez-Martinez, A. A1 - Van Driessche, A.E.S. A1 - Cölfen, H. A1 - Kellermeier, M. T1 - New insights into the nucleation of portlandite and the effects of polymeric additives N2 - The crystallization of calcium hydroxide (Ca(OH)2, CH, portlandite) is a key process during the early stages of cement hydration. In the present work, we have revisited the formation of this mineral through nucleation and growth from supersaturated aqueous solutions, in the light of the currently emerging picture of multistage “non-classical” crystallization. To that end, we developed a titration-based assay, in which stock solutions of both relevant ions are added simultaneously into a reservoir, where supersaturation increases slowly at constant stoichiometry until nucleation occurs. This procedure allows both pre- and early post-nucleation phenomena to be analyzed quantitatively. Complementarily, the early stages of portlandite mineralization were probed by various advanced characterization techniques, including cryo-transmission electron microscopy (cryo-TEM), in-situ small-angle X-ray scattering (SAXS), pair distribution function (PDF) analysis of high-energy X-ray scattering (HEXS) data, and analytical ultracentrifugation (AUC). The experimental data show that the formation of calcium hydroxide starts with the association of ions into complexes and clusters, which subsequently coalesce to form amorphous nanoparticles – much like what has been observed in the case of calcium carbonate and other prominent minerals. Subsequently, these particles aggregate and build networks, which eventually transform into hexagonal Ca(OH)2 crystals. The presence of a soluble polycarboxylate – as a known inhibitor of portlandite crystallization – does not change the main characteristics of this multistep nucleation pathway, but it proved capable of significantly extending the lifetime of the amorphous intermediate phase and thus delaying the transition to the final crystalline phase. Our observations confirm the notion that “non-classical” crystallization is a much more common phenomenon than initially believed – and that, for minerals forming in aqueous environments, it may actually be the rule rather than the exception. KW - General Materials Science KW - Building and Construction PY - 2023 DO - https://doi.org/10.1016/j.cemconres.2023.107258 SN - 0008-8846 VL - 173 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-58162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -